114
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Optimization of Savonius wind turbine blades based on perturbed stochastic fractal search algorithm and Kriging surrogate model

ORCID Icon & ORCID Icon
Pages 2156-2173 | Received 23 Aug 2022, Accepted 02 Dec 2022, Published online: 02 Mar 2023

References

  • Abdelaziz, K. R., M. A. A. Nawar, A. Ramadan, Y. A. Attai, and M. H. Mohamed. 2022. Performance improvement of a Savonius turbine by using auxiliary blades. Energy 244:122575. doi:10.1016/j.energy.2021.122575.
  • Abdelsalam, A. M., M. A. Kotb, K. Yousef, and I. M. Sakr. 2021. Performance study on a modified hybrid wind turbine with twisted Savonius blades. Energy Conversion and Management 241:114317. doi:10.1016/j.enconman.2021.114317.
  • Alom, N., and U. K. Saha. 2019. Influence of blade profiles on Savonius rotor performance: numerical simulation and experimental validation. Energy Conversion and Management 186:267–77. doi:10.1016/j.enconman.2019.02.058.
  • Chen, X., H. Yue, and K. Yu. 2019. Perturbed stochastic fractal search for solar PV parameter estimation. Energy 189:116247. doi:10.1016/j.energy.2019.116247.
  • Derse, O., and E. Yılmaz. 2022. Optimal site selection for wind energy: A case study. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 44 (3):6660–77. doi:10.1080/15567036.2021.1955048.
  • Dewan, A., A. Gautam, and R. Goyal. 2021. Savonius wind turbines: A review of recent advances in design and performance enhancements. Materials Today: Proceedings 47:2976–83. doi:10.1016/j.matpr.2021.05.205.
  • Dinh Le, A., B. D. Minh, and C. D. Trinh. 2022. High efficiency energy harvesting using a savonius turbine with multicurve and auxiliary blade. Journal of Fluids Engineering 144 (11):111207. doi:10.1115/1.4054705.
  • Duraklı, Z., and V. Nabiyev. 2022. A new approach based on Bezier curves to solve path planning problems for mobile robots. Journal of Computational Science 58:101540. doi:10.1016/j.jocs.2021.101540.
  • Eshagh Nimvari, M., H. Fatahian, and E. Fatahian. 2020. Performance improvement of a Savonius vertical axis wind turbine using a porous deflector. Energy Conversion and Management 220:113062. doi:10.1016/j.enconman.2020.113062.
  • Fatahian, E., F. Ismail, M. Hafifi Hafiz Ishak, and W. Shyang Chang. 2022. An innovative deflector system for drag-type Savonius turbine using a rotating cylinder for performance improvement. Energy Conversion and Management 257:115453. doi:10.1016/j.enconman.2022.115453.
  • Hassan Saeed, H. A., A. M. Nagib Elmekawy, and S. Z. Kassab. 2019. Numerical study of improving Savonius turbine power coefficient by various blade shapes. Alexandria Engineering Journal 58 (2):429–41. doi:10.1016/j.aej.2019.03.005.
  • Kamal, M. M., and R. P. Saini. 2022. A numerical investigation on the influence of savonius blade helicity on the performance characteristics of hybrid cross-flow hydrokinetic turbine. Renewable Energy 190:788–804. doi:10.1016/j.renene.2022.03.155.
  • Kerikous, E., and D. Thévenin. 2019. Optimal shape of thick blades for a hydraulic Savonius turbine. Renewable Energy 134:629–38. doi:10.1016/j.renene.2018.11.037.
  • Kouloumpis, V., R. A. Sobolewski, and X. Yan. 2020. Performance and life cycle assessment of a small scale vertical axis wind turbine. Journal of Cleaner Production 247:119520. doi:10.1016/j.jclepro.2019.119520.
  • Laws, P., J. S. Saini, A. Kumar, and S. Mitra. 2020. Improvement in savonius wind turbines efficiency by modification of blade designs—a numerical study. Journal of Energy Resources Technology 142 (6):061303. doi:10.1115/1.4045476.
  • Le, A. D., B. Minh Duc, T. Van Hoang, and H. The Tran. 2022. Modified savonius wind turbine for wind energy harvesting in urban environments. Journal of Fluids Engineering 144 (8):081501. doi:10.1115/1.4053619.
  • Lophaven, S. N., H. B. Nielsen, and J. Søndergaard. 2002. DACE-A Matlab Kriging toolbox. version 2.0.
  • Marinić-Kragić, I., D. Vučina, and Z. Milas. 2019. Concept of flexible vertical-axis wind turbine with numerical simulation and shape optimization. Energy 167:841–52. doi:10.1016/j.energy.2018.11.026.
  • Marinić-Kragić, I., D. Vučina, and Z. Milas. 2022. Global optimization of Savonius-type vertical axis wind turbine with multiple circular-arc blades using validated 3D CFD model. Energy 241:122841. doi:10.1016/j.energy.2021.122841.
  • McKay, M. D., R. J. Beckman, and W. J. Conover. 2000. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 42:55–61. doi:10.1080/00401706.2000.10485979.
  • Meri Al Absi, S., A. Hasan Jabbar, S. Oudah Mezan, B. Ahmed Al-Rawi, and S. Thajeel Al_attabi. 2021. An experimental test of the performance enhancement of a Savonius turbine by modifying the inner surface of a blade. Materials Today: Proceedings 42:2233–40. doi:10.1016/j.matpr.2020.12.309.
  • Mohamed, M. H., F. Alqurashi, and D. Thévenin. 2022. Automatic blade shape optimization of a three-bladed modified savonius turbine. Frontiers in Energy Research 9:796860. doi:10.3389/fenrg.2021.796860.
  • Mu, Z., G. Tong, Z. Xiao, Q. Deng, F. Feng, Y. Li, and G. V. Arne. 2022. Study on aerodynamic characteristics of a savonius wind turbine with a modified blade. Energies 15 (18):6661. doi:10.3390/en15186661.
  • Ricci, R., R. Romagnoli, S. Montelpare, and D. Vitali. 2016. Experimental study on a Savonius wind rotor for street lighting systems. Applied Energy 161:143–52. doi:10.1016/j.apenergy.2015.10.012.
  • Saad, A. S., A. Elwardany, I. I. El-Sharkawy, S. Ookawara, and M. Ahmed. 2021. Performance evaluation of a novel vertical axis wind turbine using twisted blades in multi-stage Savonius rotors. Energy Conversion and Management 235:114013. doi:10.1016/j.enconman.2021.114013.
  • Sacks, J., W. J. Welch, T. J. Mitchell, and H. P. Wynn. 1989. Design and Analysis of Computer Experiments. Statistical Science 4 (4):409–23. doi:10.1214/ss/1177012413.
  • Sheldahl, R. E., L. V. Feltz, and B. F. Blackwell. 1978. Wind tunnel performance data for two- and three-bucket Savonius rotors. Journal of Energy 2 3 (3):160–64. doi:10.2514/3.47966.
  • Tahani, M., A. Rabbani, A. Kasaeian, M. Mehrpooya, and M. Mirhosseini. 2017. Design and numerical investigation of Savonius wind turbine with discharge flow directing capability. Energy 130:327–38. doi:10.1016/j.energy.2017.04.125.
  • Tian, W., Z. Mao, B. Zhang, and Y. Li. 2018. Shape optimization of a Savonius wind rotor with different convex and concave sides. Renewable Energy 117:287–99. doi:10.1016/j.renene.2017.10.067.
  • Wong, K. H., W. T. Chong, S. C. Poh, Y. -C. Shiah, N. L. Sukiman, and C. -T. Wang. 2018. 3D CFD simulation and parametric study of a flat plate deflector for vertical axis wind turbine. Renewable Energy 129:32–55. doi:10.1016/j.renene.2018.05.085.
  • Wong, K. H., W. T. Chong, N. L. Sukiman, Y. -C. Shiah, S. C. Poh, K. Sopian, and W. -C. Wang. 2018. Experimental and simulation investigation into the effects of a flat plate deflector on vertical axis wind turbine. Energy Conversion and Management 160:109–25. doi:10.1016/j.enconman.2018.01.029.
  • Xu, W., C. -C. Li, S. -X. Huang, and Y. Wang. 2022. Aerodynamic performance improvement analysis of savonius vertical axis wind turbine utilizing plasma excitation flow control. Energy 239:122133. doi:10.1016/j.energy.2021.122133.
  • Zhang, Z., M. Chen, X. Zhang, and Z. Wang, 2009. Analysis of inflection points for planar cubic bezier curve. 2009 International Conference on Computational Intelligence and Software Engineering, 1–4. doi:10.1109/CISE.2009.5366218.
  • Zhang, L., and J. Qu. 2021. Study on aerodynamic performance of a combined vertical axis wind turbine based on blade element momentum theorem. Journal of Renewable and Sustainable Energy 13 (3):033304. doi:10.1063/5.0031693.
  • Zhang, B., B. Song, Z. Mao, W. Tian, B. Li, and B. Li. 2017. A novel parametric modeling method and optimal design for savonius wind turbines. Energies 10 (3):301. doi:10.3390/en10030301.
  • Zhou, Q., Z. Xu, S. Cheng, Y. Huang, and J. Xiao. 2018. Innovative Savonius rotors evolved by genetic algorithm based on 2D-DCT encoding. Soft Computing 22 (23):8001–10. doi:10.1007/s00500-018-3214-x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.