197
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Synthesis of phthalocyanine complexes carrying caffeic acid groups: increasing photovoltaic performance by doping silver nanoparticles

, & ORCID Icon
Pages 2240-2252 | Received 12 Dec 2022, Accepted 27 Feb 2023, Published online: 06 Mar 2023

References

  • Abdel Aal, S., and D. Awadh. 2022. The effect of anchoring group on the performances of metal-free phthalocyanine and metallophthalocyanine dye/titanium dioxide interface for dye-sensitized solar cells. Surfaces and Interfaces 32:102089. doi:10.1016/j.surfin.2022.102089.
  • Acharya, S., and N. Kishore. 2022. Hydro-liquefaction of Lemna minor(duckweed) with hydrogen-donor solvent at varying hydrogen pressures. International Journal of Sustainable Energy 41 (11):2169–84. doi:10.1080/14786451.2022.2140157.
  • Agırtas, M. S. 2007. Non-aggregating phthalocyanines with bulky 2,4-di-tert-butylphenoxy-substituents. Dyes and Pigments 74:490–93. doi:10.1016/j.dyepig.2006.03.009.
  • Ağırtaş, M. S. 2007. Synthesis and characterization of novel symmetrical phthalocyanines substituted with four benzo [d] [1, 3] dioxol-5-ylmethoxy groups. Inorganica Chimica Acta 360:2499–502. doi:10.1016/j.ica.2006.12.029.
  • Ağırtas¸, M. S., A. Altındal, B. Salih, S. Saydam, and Ö. Bekaroğlu. 2011. Synthesis, characterization, and electrochemical and electrical properties of novel mono and ball-type metallophthalocyanines with four 9,9-bis(4-hydroxyphenyl) fluorine. Dalton Transactions 40:3315–24. doi:10.1039/c0dt01575j.
  • Ağirtaş, M. S., D. Güngördü Solğun, Ü. Yildiko, and A. Özkartal. 2020. Design of novel substituted phthalocyanines; synthesis and fluorescence, DFT, photovoltaic properties. Turkish Journal of Chemistry 44:1574–86. doi:10.3906/kim-2007-40.
  • Ali, A. M., D. A. Said, M. Khayyat, M. Boustimi, and R. Seoudi. 2020. Improving the efficiency of the organic solar cell (CuPc/C60) via PEDOT: PSS as a photoconductor layer doped by silver nanoparticles. Results in Physics 16:102819. doi:10.1016/j.rinp.2019.102819.
  • Alkhalayfeh, M. A., A. A. Aziz, and M. Z. Pakhuruddin. 2021. An overview of enhanced polymer solar cells with embedded plasmonic nanoparticles. Renewable and Sustainable Energy Reviews 141:110726. doi:10.1016/j.rser.2021.110726.
  • Amitha, G. S., M. Y. Ameen, V. Sivaji Reddy, and S. Vasudevan. 2019. Synthesis of peripherally tetra substituted neutral azophenoxy zinc phthalocyanine and its application in bulk hetero junction solar cells. Journal of Molecular Structure 1185:425–31. doi:10.1016/j.molstruc.2019.02.086.
  • Aravind, S. V., G. Ahmed, and N. Kishore. 2023. Pyrolysis of Delonix regia using metal oxide catalysts and solvent effect on fuel fraction of bio-oil. Results in Engineering 17:100876. doi:10.1016/j.rineng.2023.100876.
  • Asghari, S., S. Farahmand, J. S. Razavizadeh, and M. Ghiaci. 2020. One-step photocatalytic benzene hydroxylation over iron (II) phthalocyanine: A new application for an old catalyst. Journal of Photochemistry and Photobiology: A, Chemistry 392:112412. doi:10.1016/j.jphotochem.2020.112412.
  • Bunin, D. A., A. G. Martynov, E. A. Safonova, A. Y. Tsivadze, and Y. G. Gorbunova. 2022. Robust route toward cationic phthalocyanines through reductive amination. Dyes and Pigments 207:110768. doi:10.1016/j.dyepig.2022.110768.
  • Chauhan, R. 2022. Scanning prevalent technologies to promote scalable devising of DSSCs: An emphasis on dye component precisely with a shift to ambient algal dyes. Inorganic Chemistry Communications 139:109368. doi:10.1016/j.inoche.2022.109368.
  • Ghadari, R., A. Sabri, P. -S. Saei, F. -T. Kong, and H. M. Marques. 2020. Phthalocyanine-silver nanoparticle structures for plasmon-enhanced dye-sensitized solar cells. Solar Energy 198:283–94. doi:10.1016/j.solener.2020.01.053.
  • Gok Yurttaş, A., A. M. Sevim, K. Çınar, G. Yasa Atmaca, A. Erdoğmuş, and A. Gül. 2022. The effects of zinc(ii)phthalocyanine photosensitizers on biological activities of epitheloid cervix carcinoma cells and precise determination of absorbed fluence at a specific wavelength. Dyes and Pigments 198:110012. doi:10.1016/j.dyepig.2021.110012.
  • Gorduk, S., and A. Altindal. 2020. Non-peripherally tetra substituted phthalocyanines bearing carboxylic acid anchoring groups as photosensitizer for high efficient dye sensitized solar cells. Journal of Molecular Structure 1204:127636. doi:10.1016/j.molstruc.2019.127636.
  • Gounden, D., N. Nombona, and W. E. V. Zyl. 2020. Recent advances in phthalocyanines for chemical sensor, non-linear optics (NLO) and energy storage applications. Coordination Chemistry Reviews 420:213359. doi:10.1016/j.ccr.2020.213359.
  • Guan, X., R. Guo, L. Xu, Q. Ye, H. Yu, G. Liu, H. Wu, K. Chen, and Y. Peng. 2022. NIR-I region absorbing halogenated phenylamino zinc (II) phthalocyanines: Synthesis and photophysical properties. Inorganica chimica acta 538:120995. doi:10.1016/j.ica.2022.120995.
  • Güngördü Solğun, D., S. Horoz, and M. S. Ağırtas. 2018. Synthesis of novel tetra (4-tritylphenoxy) substituted metallophthalocyanines and investigation of their aggregation, photovoltaic, solar cell properties. Inorganic and Nano-Metal Chemistry 48:508–14. doi:10.1080/24701556.2019.1572624.
  • Güngördü Solğun, D., U. Yıldıko, and M. S. Ağırtaş. 2022. Synthesis, DFT calculations, photophysical, photochemical properties of peripherally metallophthalocyanines bearing (2- (Benzo[d] [1,3] Dioxol-5-Ylmethoxy) Phenoxy) substituents. Polycyclic Aromatic Compounds 42:6444–62. doi:10.1080/10406638.2021.1983618.
  • Güngördü Solğun, D., U. Yıldıko, A. Özkartal, and M. S. Ağırtaş. 2021. Photovoltaic performance properties, DFT studies, and synthesis of (E)3(diphenxy) acrylic acid substituted phthalocyanine complexes. Chemical Papers 75:6285–95. doi:10.1007/s11696-021-01786-6.
  • Hirakawa, K., A. Katayama, S. Yamaoka, T. Ikeue, and S. Okazaki. 2022. Photosensitized protein damage by water-soluble phthalocyanine zinc(ii) and gallium(iii) complexes through electron transfer and singlet oxygen production. Chemical Physics Letters 802:139764. doi:10.1016/j.cplett.2022.139764.
  • Husain, A. A. F., W. Z. W. Hasan, S. Shafie, M. N. Hamidon, and S. S. Pandey. 2018. A review of transparent solar photovoltaic technologies. Renewable and Sustainable Energy Reviews 94:779–91. doi:10.1016/j.rser.2018.06.031.
  • Ince, M., J. -H. Yum, Y. Kim, S. Mathew, M. Grätzel, T. Torres, and M. K. Nazeeruddin. 2014. Molecular engineering of phthalocyanine sensitizers for dye-sensitized solar cells. The Journal of Physical Chemistry C 118:17166–70. doi:10.1021/jp502447y.
  • Kalfagiannis, N., P. G. Karagiannidis, C. Pitsalidis, N. T. Panagiotopoulos, C. Gravalidis, S. Kassavetis, P. Patsalas, and S. Logothetidis. 2012. Plasmonic silver nanoparticles for improved organic solar cells. Solar Energy Materials and Solar Cells 104:165–74. doi:10.1016/j.solmat.2012.05.018.
  • Khurana, P., S. Thatai, N. B. Chaure, S. Mahamuni, and S. Kulkarni. 2014. Solution-processed copper phthalocyanine–gold nanoparticle hybrid nanocomposite thin films. Thin Solid Films 565:202–06. doi:10.1016/j.tsf.2014.06.015.
  • Klipfel, N., J. Xia, P. Culík, S. Orlandi, M. Cavazzini, N. Shibayama, H. Kanda, C. Igci, W. Li, Y. -B. Cheng, et al. 2022. Zn(ii) and Cu(II) tetrakis(diarylamine)phthalocyanines as hole-transporting materials for perovskite solar cells. Materials Today Energy 29:101110. doi:10.1016/j.mtener.2022.101110.
  • Kong, S., X. Wang, L. Bai, Y. Song, and F. Meng. 2019. Multi-arm ionic liquid crystals formed by pyridine-mesophase and copper phthalocyanine. Journal of Molecular Liquids 288:111012. doi:10.1016/j.molliq.2019.111012.
  • Kumar, Y., J. Ringenberg, S. S. Depuru, V. K. Devabhaktuni, J. W. Lee, E. Nikolaidis, B. Andersen, and A. Afjeh. 2016. Wind energy: Trends and enabling technologies. Renewable and Sustainable Energy Reviews 53:209–24. doi:10.1016/j.rser.2015.07.200.
  • Liu, K., S. Qu, X. Zhang, F. Tan, and Z. Wang. 2013. Improved photovoltaic performance of silicon nanowire/organic hybrid solar cells by incorporating silver nanoparticles. Nanoscale Research Letters 8 (1):2–6. doi:10.1186/1556-276X-8-88.
  • McRae, E. K. S., D. E. Nevonen, S. A. McKenna, and V. N. Nemykin. 2019. Binding and photodynamic action of the cationic zinc phthalocyanines with different types of DNA toward understanding of their cancer therapy activity. Journal of Inorganic Biochemistry 199:110793. doi:10.1016/j.jinorgbio.2019.110793.
  • Nemakal, M., S. Aralekallu, I. Mohammed, M. Pari, K. R. Venugopala Reddy, and L. K. Sannegowda. 2019. Nanomolar detection of 4-aminophenol using amperometric sensor based on a novel phthalocyanine. Electrochimica Acta 318:342–53. doi:10.1016/j.electacta.2019.06.097.
  • Openda, Y. I., B. Babu, and T. Nyokong. 2022. Novel cationic-chalcone phthalocyanines for photodynamic therapy eradication of S. aureus and E. coli bacterial biofilms and MCF-7 breast cancer. Photodiagnosis and Photodynamic Therapy 38:102863. doi:10.1016/j.pdpdt.2022.102863.
  • O’regan, M. G., and M. Grätzel. 1991. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–40. doi:10.1038/353737a0.
  • Singh, S., A. Aggarwal, N. V. S. D. K. Bhupathiraju, I. R. Jovanovic, M. Landress, M. P. Tuz, R. Gao, and C. M. Drain. 2020. Comparing a thioglycosylated chlorin and phthalocyanine as potential theranostic agents. Bioorganic & Medicinal Chemistry 28:115259. doi:10.1016/j.bmc.2019.115259.
  • Sudhakara, S. M., M. C. Devendrachari, H. M. N. Kotresh, and F. Khan. 2021. Silver nanoparticles decorated phthalocyanine doped polyaniline for the simultaneous electrochemical detection of hydroquinone and catechol. Journal of Electroanalytical Chemistry 884:115071. doi:10.1016/j.jelechem.2021.115071.
  • Urbani, M., M. -E. Ragoussi, M. K. Nazeeruddin, and T. Torres. 2019. Phthalocyanines for dye-sensitized solar cells. Coordination Chemistry Reviews 381:1–64. doi:10.1016/j.ccr.2018.10.007.
  • Wu, S., Q. Liu, Y. Zheng, R. Li, and T. Peng. 2017. An efficient copper phthalocyanine additive of perovskite precursor for improving the photovoltaic performance of planar perovskite solar cells. Journal of Power Sources 359:303–10. doi:10.1016/j.jpowsour.2017.05.083.
  • Yahya, M., A. Bouziani, C. Ocak, Z. Seferoğlu, and M. Sillanpaa. 2021. Organic/metal-organic photosensitizers for dye-sensitized solar cells (DSSC): Recent developments, new trends, and future perceptions. Dyes and Pigments 192:209227. doi:10.1016/j.dyepig.2021.109227.
  • Zeng, X. X., Y. -T. Xu, Y. -X. Yin, X. -W. Wu, J. Yue, and Y. -G. Guo. 2019. Recent advances in nanostructured electrode-electrolyte design for safe and next-generation electrochemical energy storage. Materials Today Nano 8:100057. doi:10.1016/j.mtnano.2019.100057.
  • Zhao, Y. Y., J. -Y. Chen, J. -Q. Hu, L. Zhang, A. -L. Lin, R. Wang, B. -Y. Zheng, M. -R. Ke, X. Li, and J. -D. Huang. 2021. The substituted zinc(ii) phthalocyanines using “sulfur bridge” as the linkages. Synthesis, red-shifted spectroscopic properties and structure-inherent targeted photodynamic activities. Dyes and Pigments 189:109270. doi:10.1016/j.dyepig.2021.109270.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.