241
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Dust and cleaning impact on the performance of photovoltaic: an outdoor experimental study

ORCID Icon, , , , ORCID Icon & ORCID Icon
Pages 3107-3124 | Received 06 Jan 2023, Accepted 03 Mar 2023, Published online: 26 Mar 2023

References

  • Adinoyi, M. J., and S. A. Said. 2013. Effect of dust accumulation on the power outputs of solar photovoltaic modules. Renewable Energy 60:633–36. doi:10.1016/j.renene.2013.06.014.
  • Alawasa, K. M., R. S. Alabri, A. S. Al-Hinai, M. H. Albadi, and A. H. Al-Badi. 2021. Experimental study on the effect of dust deposition on a car park photovoltaic system with different cleaning cycles. Sustainability (Switzerland) 13 (14):7636. doi:10.3390/su13147636.
  • Al-Badi, A. 2019. Performance assessment of 20.4 kW eco-house grid-connected PV plant in Oman. International Journal of Sustainable Engineering 13 (3):230–41. doi:10.1080/19397038.2019.1658824.
  • Al-Maamary, H. M. S., H. A. Kazem, and M. T. Chaichan. 2016. Changing the energy profile of the GCC states: A review. International Journal of Applied Engineering Research 11 (3). doi:10.24842/1611/0018.
  • Al-Maghalseh, M. 2018. Experimental study to investigate the effect of dust, wind speed and temperature on the PV module performance. Jordan Journal of Mechanical and Industrial Engineering 12 (2):123–29.
  • Alnasser, T. M. A., A. M. J. Mahdy, K. I. Abass, M. T. Chaichan, and H. A. Kazem. 2020. Impact of dust ingredient on photovoltaic performance: An experimental study. Solar Energy 195 (November 2019):651–59. doi:10.1016/j.solener.2019.12.008.
  • Alquthami, T., and K. Menoufi. 2019. Soiling of photovoltaic modules: Comparing between two distinct locations within the framework of developing the photovoltaic soiling index (PVSI). Sustainability (Switzerland) 11 (17):4697. doi:https://doi.org/10.3390/su11174697.
  • Al-Waeli, A. H. A., H. A. Kazem, M. T. Chaichan, and K. Sopian. 2019a. Photovoltaic/Thermal (PV/T) systems: Principles, design, and applications. 1st ed. Switzerland AG: Springer Nature.
  • Al-Waeli, A. H. A., H. A. Kazem, M. T. Chaichan, and K. Sopian. 2019b. Experimental investigation of using nano-PCM/nanofluid on a photovoltaic thermal system (PVT): Technical and economic study. Thermal Science and Engineering Progress 11 (April):213–30. doi:10.1016/j.tsep.2019.04.002.
  • Al-Waeli, A. H. A., H. A. Kazem, K. Sopian, and M. T. Chaichan. 2017. Techno-economical assessment of grid connected PV/T using nanoparticles and water as base-fluid systems in Malaysia. International Journal of Sustainable Energy 37 (6):558–75. doi:10.1080/14786451.2017.1323900.
  • Al-Waeli, A. H. A., K. Sopian, H. A. Kazem, and M. T. Chaichan. 2018. Nanofluid based grid connected PV/T systems in Malaysia: A techno-economical assessment. Sustainable Energy Technologies and Assessments 28 (June):81–95. doi:10.1016/j.seta.2018.06.017.
  • Barrios, F. A. G., and J. F. Villegas. 2018. Effect of environmental factors on the performance of photovoltaic solar modules arrays. International Journal of ChemTech Research 11 (01):23–32.
  • Chaichan, M. T., and H. A. Kazem. 2020. Experimental evaluation of dust composition impact on photovoltaic performance in Iraq. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 00 (00):1–22. doi:10.1080/15567036.2020.1746444.
  • Chaichan, M. T., H. A. Kazem, A. H. A. Al-Waeli, and K. Sopian. 2020. The effect of dust components and contaminants on the performance of photovoltaic for the four regions in Iraq: A practical study. Renewable Energy and Environmental Sustainability 5:3. doi:10.1051/rees/2019009.
  • Chaichan, M. T., H. A. Kazem, S. I. Ibrahim, A. A. Radhi, B. K. Mahmoud, and A. J. Ali. 2020. Photovoltaic panel type influence on the performance degradation due dust accumulation. IOP Conference Series: Materials Science and Engineering 928 (2). doi: 10.1088/1757-899X/928/2/022092.
  • Chaichan, M., B. A. Mohammed, and H. A. Kazem. 2015. Effect of pollution and cleaning on photovoltaic performance based on experimental study. International Journal of Scientific & Engineering Research 6 (4):594–601. doi:10.13140/RG.2.1.2928.2725.
  • Chen, J., G. Pan, J. Ouyang, J. Ma, L. Fu, and L. Zhang. 2020. Study on impacts of dust accumulation and rainfall on PV power reduction in East China. Energy 194. doi:10.1016/j.energy.2020.116915.
  • Cordero, R. R., A. Damiani, D. Laroze, S. MacDonell, J. Jorquera, E. Sepúlveda, S. Feron, P. Llanillo, F. Labbe, J. Carrasco, et al. 2018. Effects of soiling on photovoltaic (PV) modules in the Atacama Desert. Scientific Reports 8 (1):1–14. doi:10.1038/s41598-018-32291-8.
  • Darwish, Z. A., H. A. Kazem, and K. Sopian. 2013. Effect of dust on photovoltaic performance review and research status. 7th WSEAS International Conference on Renewable Energy Sources (RES ’13), 193–99. doi:10.13140/2.1.4527.9523
  • Darwish, Z. A., H. A. Kazem, K. Sopian, M. A. A. Alghoul, and H. Alawadhi. 2018. Experimental investigation of dust pollutants and the impact of environmental parameters on PV performance: An experimental study. Environment, Development and Sustainability 20 (1):155–74. doi:10.1007/s10668-016-9875-7.
  • Darwish, Z. A., H. A. Kazem, K. Sopian, M. A. A. Al-Goul, and H. Alawadhi. 2015. Effect of dust pollutant type on photovoltaic performance. Renewable and Sustainable Energy Reviews 41:735–44. doi:10.1016/j.rser.2014.08.068.
  • Darwish, Z. A., K. Sopian, H. Alawadhi, H. A. Kazem, and M. A. Alghoul. 2016. The impact of calcium carbonate on the photovoltaic performance: An indoor experimental study. International Journal of Applied Engineering Research 11 (3):2091–97.
  • Deepak, and C. S. Malvi. 2022. Experimental investigation of effect of dust accumulation and discoloration on photovoltaic panel material. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 44 (2):4427–41. doi:10.1080/15567036.2022.2077477.
  • Elshazly, E., A. A. El-Rehim, and I. El-Mahallawi. 2021. Comparison of dust and high-temperature effects on mono and poly photovoltaic panels. IOP Conference Series: Materials Science and Engineering 1172 (1):012019. doi:10.1088/1757-899x/1172/1/012019.
  • Gholami, A., I. Khazaee, S. Eslami, M. Zandi, and E. Akrami. 2018. Experimental investigation of dust deposition effects on photo-voltaic output performance. Solar Energy 159 (October 2017):346–52. doi:10.1016/j.solener.2017.11.010.
  • Goossens, D., and E. Van Kerschaever. 1999. Aeolian dust deposition on photovoltaic solar cells: The effects of wind velocity and airborne dust concentration on cell performance. Solar Energy 66 (4):277–89. doi:10.1016/S0038-092X(99)00028-6.
  • Guerra, T. A., J. A. Guerra, B. O. Tabernero, and G. De La Cruz García. 2017. Comparative energy performance analysis of six primary photovoltaic technologies in Madrid (Spain). Energies 10 (6):1–23. doi:10.3390/en10060772.
  • Güngör, O., H. Kahveci, and H. S. Gökçe. 2022. The effect of various industrial dust particles on the performance of photovoltaic panels in Turkey. Environmental Science and Pollution Research 30 (6):1–17. doi:10.1007/s11356-022-23216-0.
  • Hachicha, A. A., I. Al-Sawafta, and Z. Said. 2019. Impact of dust on the performance of solar photovoltaic (PV) systems under United Arab Emirates weather conditions. Renewable Energy 141:287–97. doi:https://doi.org/10.1016/j.renene.2019.04.004.
  • Hadj Mahammed, I., A. Hadj Arab, S. Berrah, and Y. Bakelli. 2022. Impact of the desert climate on the degradation of photovoltaic modules characteristics: A case study. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 44 (3):6021–34. doi:10.1080/15567036.2022.2091688.
  • Huot, M., L. Kumar, J. Selvaraj, M. Hasanuzzaman, and N. A. Rahim. 2021. Performance investigation of tempered glass-based monocrystalline and polycrystalline solar photovoltaic panels. International Journal of Photoenergy 2021:1–8. doi:10.1155/2021/2335805.
  • Hussain, A., A. Batra, and R. Pachauri. 2017. An experimental study on effect of dust on power loss in solar photovoltaic module. Renewables: Wind, Water, and Solar 4 (1):1–13. doi:10.1186/s40807-017-0043-y.
  • Kaldellis, J. K., and P. Fragos. 2011. Ash deposition impact on the energy performance of photovoltaic generators. Journal of Cleaner Production 19 (4):311–17. doi:10.1016/j.jclepro.2010.11.008.
  • Karaagac, M. O., H. Ogul, and F. Bulut. 2021. Evaluation of monocrystalline and polycrystalline photovoltaic panels in Sinop province conditions. Turkish Journal of Nature and Science 10 (1):176–81. doi:10.46810/tdfd.855488.
  • Kazem, H. A., and M. T. Chaichan. 2019. The effect of dust accumulation and cleaning methods on PV panels’ outcomes based on an experimental study of six locations in Northern Oman. Solar Energy 187 (May):30–38. doi:10.1016/j.solener.2019.05.036.
  • Kazem, H. A., M. T. Chaichan, and A. H. A. Alwaeli. 2020. The impact of dust’s physical properties on photovoltaic modules outcomes. Renewable Energy and Sustainable Buildings 495–506. doi:10.1007/978-3-030-18488-9_39.
  • Kazem, H. A., M. T. Chaichan, A. H. A. Al-Waeli, R. Al-Badi, M. A. Fayad, and A. Gholami. 2022. Dust impact on photovoltaic/thermal system in harsh weather conditions. Solar Energy 245:308–21. doi:10.1016/j.solener.2022.09.012.
  • Kazem, H. A., M. T. Chaichan, A. H. A. Al-Waeli, and K. Sopian. 2020a. A novel model and experimental validation of dust impact on grid-connected photovoltaic system performance in Northern Oman. Solar Energy 206 (May):564–78. doi:10.1016/j.solener.2020.06.043.
  • Kazem, H. A., M. T. Chaichan, A. H. A. Al-Waeli, and K. Sopian. 2020b. A review of dust accumulation and cleaning methods for solar photovoltaic systems. Journal of Cleaner Production 276:123187. doi:10.1016/j.jclepro.2020.123187.
  • Kazem, H. A., T. Khatib, and K. Sopian. 2013. Sizing of a standalone photovoltaic/battery system at minimum cost for remote housing electrification in Sohar, Oman. Energy and Buildings 61:108–15. doi:10.1016/j.enbuild.2013.02.011.
  • Kazem, H. A., T. Khatib, K. Sopian, F. Buttinger, W. Elmenreich, and A. S. Albusaidi. 2013. Effect of dust deposition on the performance of multi-crystalline photovoltaic modules based on experimental measurements. International Journal of Renewable Energy Researc 3 (4):850–53. https://pdfs.semanticscholar.org/0fc2/393de88e647da2d65d1e0022df873fb37e81.pdf.
  • Kazem, H. A., T. Khatib, K. Sopian, and W. Elmenreich. 2014. Performance and feasibility assessment of a 1.4 kW roof top grid-connected photovoltaic power system under desertic weather conditions. Energy and Buildings 82:123–29. doi:10.1016/j.enbuild.2014.06.048.
  • Kumar, L., M. Hasanuzzaman, and N. A. Rahim. 2019. Global advancement of solar thermal energy technologies for industrial process heat and its future prospects: A review. Energy Conversion and Management 195 (May):885–908. doi:10.1016/j.enconman.2019.05.081.
  • Liu, L., H. Qian, E. Sun, B. Li, Z. Zhang, B. Miao, and Z. Li. 2022. Power reduction mechanism of dust-deposited photovoltaic modules: An experimental study. Journal of Cleaner Production 378:134518. doi:10.1016/j.jclepro.2022.134518.
  • Lu, H., R. Cai, L. Z. Zhang, L. Lu, and L. Zhang. 2020. Experimental investigation on deposition reduction of different types of dust on solar PV cells by self-cleaning coatings. Solar Energy 206 (June):365–73. doi:10.1016/j.solener.2020.06.012.
  • Maghami, M. R., H. Hizam, C. Gomes, M. A. Radzi, M. I. Rezadad, and S. Hajighorbani. 2016. Power loss due to soiling on solar panel: A review. Renewable and Sustainable Energy Reviews 59:1307–16. doi:10.1016/j.rser.2016.01.044.
  • Mahdy, A. M. J., S. I. Ibrahim, D. S. M. Al-Zubidi, A. J. Ali, M. T. Chaichan, and H. A. Kazem. 2020. The influence of dust physical specifications photovoltaic modules performance. IOP Conference Series: Materials Science and Engineering 928 (2):1–10. doi:10.1088/1757-899X/928/2/022123.
  • Majeed, R., A. Waqas, H. Sami, M. Ali, and N. Shahzad. 2020. Experimental investigation of soiling losses and a novel cost-effective cleaning system for PV modules. Solar Energy 201 (March):298–306. doi:10.1016/j.solener.2020.03.014.
  • Mani, M., and R. Pillai. 2010. Impact of dust on solar photovoltaic (PV) performance: Research status, challenges and recommendations. Renewable and Sustainable Energy Reviews 14 (9):3124–31. doi:10.1016/j.rser.2010.07.065.
  • Mekhilef, S., R. Saidur, and M. Kamalisarvestani. 2012. Effect of dust, humidity and air velocity on efficiency of photovoltaic cells. Renewable and Sustainable Energy Reviews 16 (5):2920–25. doi:10.1016/j.rser.2012.02.012.
  • Micheli, L., E. F. Fernández, J. T. Aguilera, and F. Almonacid. 2021. Economics of seasonal photovoltaic soiling and cleaning optimization scenarios. Energy 215 (105229). doi: 10.1016/j.energy.2020.119018.
  • Mirzaei, M., and M. Z. Mohiabadi. 2017. A comparative analysis of long-term field test of monocrystalline and polycrystalline PV power generation in semi-arid climate conditions. Energy for Sustainable Development 38:93–101. doi:10.1016/j.esd.2017.01.002.
  • Mohapatra, A., B. Nayak, and K. B. Mohanty. 2021. Analytical approach to locate multiple power peaks of photovoltaic array under partial shading condition and hybrid array configuration schemes to reduce mismatch losses. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2021 (00):1–22. doi:10.1080/15567036.2021.1945710.
  • Mohsin, L., A. Sakhrieh, A. Aboushi, A. Hamdan, Abdelhafez, E., and M. Hamdan. 2018. Optimized cleaning and cooling for photovoltaic modules based on the output performance. Thermal Science 22 (1 Part A):237–46. doi:10.2298/TSCI151004145M.
  • Ndiaye, A., C. M. F. Kébé, P. A. Diaye, A. Charki, A. Kobi, and V. Sambou. 2013. Impact of dust on the photovoltaic (PV) modules characteristics after an exposition year in Sahelian environment: The case of Senegal. International Journal of Physical Sciences Full Length Research Paper 8 (21):1166–73. doi:10.5897/IJPS2013.3921.
  • Nguyen, T. P., H. Nguyen, V. H. Phan, and H. Q. T. Ngo. 2021. Modeling and practical implementation of motion controller for stable movement in a robotic solar panel dust-removal system. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2021 (00):1–23. doi:10.1080/15567036.2021.1934194.
  • Rakesh, N., S. Subramaniam, B. Natarajan, and M. Udugula. 2022. A non-puzzle based interconnection scheme for energy savings and income generation from partially shaded photovoltaic modules. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2022:1–19. doi:10.1080/15567036.2022.2029973.
  • Sarver, T., A. Al-Qaraghuli, and L. L. Kazmerski. 2013. A comprehensive review of the impact of dust on the use of solar energy: History, investigations, results, literature, and mitigation approaches. Renewable and Sustainable Energy Reviews 22:698–733. doi:10.1016/j.rser.2012.12.065.
  • Sopian, K., A. H. A. Al-Waeli, and H. A. Kazem. 2020. Energy, exergy and efficiency of four photovoltaic thermal collectors with different energy storage material. Journal of Energy Storage 29 (October 2019):101245. doi:10.1016/j.est.2020.101245.
  • Sulaiman, S. A., H. H. Hussain, N. S. Leh, and M. S. Razali. 2011. Effects of dust on the performance of PV panels. International Journal of Mechanical and Mechatronics Engineering 5 (10):2021–26.
  • Touati, F., M. Al-Hitmi, and H. Bouchech. 2012. Towards understanding the effects of climatic and environmental factors on solar PV performance in arid desert regions (Qatar) for various PV technologies. 2012 1st International Conference on Renewable Energies and Vehicular Technology, REVET 2012, 78–83. doi:10.1109/REVET.2012.6195252
  • Wang, H., X. Meng, and J. Chen. 2020. Effect of air quality and dust deposition on power generation performance of photovoltaic module on building roof. Building Services Engineering Research & Technology 41 (1):73–85. doi:10.1177/0143624419868806.
  • Yazdani, H., and M. Yaghoubi. 2022. Dust deposition effect on photovoltaic modules performance and optimization of cleaning period: A combined experimental–numerical study. Sustainable Energy Technologies and Assessments 51:101946. doi:10.1016/j.seta.2021.101946.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.