93
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Experimental research on the inhibitory effect of the controlled-release inerting inhibitor on coal spontaneous combustion

, , , , &
Pages 4031-4049 | Received 24 Oct 2022, Accepted 10 Feb 2023, Published online: 14 Apr 2023

References

  • Cui, C. B., S. G. Jiang, H. Shao, W. Q. Zhang, K. Wang, and Z. Wu. 2018. Experimental study on thermo-responsive inhibitors inhibiting coal spontaneous combustion. Fuel Processing Technology 175:113–22. doi:10.1016/j.fuproc.2018.03.019.
  • Danish, E., and M. Onde. 2020. Application of fuzzy logic for predicting of mine fire in underground coal mine. Safety and Health at Work 11 (3):322–34. doi:10.1016/j.shaw.2020.06.005.
  • Deng, J., Y. Yang, Y. N. Zhang, B. Liu, and C. M. Shu. 2018. Inhibiting effects of three commercial inhibitors in spontaneous coal combustion. Energy 160:1174–85. doi:10.1016/j.energy.2018.07.040.
  • Dou, G. L., D. M. Wang, X. X. Zhong, and B. T. Qin. 2014. Effectiveness of catechin and poly (ethylene glycol) at inhibiting the spontaneous combustion of coal. Fuel Processing Technology 120 (1):123–27. doi:10.1016/j.fuproc.2013.12.016.
  • Gao, C., M. Liu, S. Lv, C. Chen, and Y. Huang. 2013. Preparation of sodium alginate hydrogel and its application in drug release. Progress in Chemistry 25 (6):1012–22. doi:10.7536/PC120953.
  • Hao, C. Y., Y. L. Chen, J. R. Wang, C. B. Deng, G. Xu, F. W. Dai, R. Si, H. Wang, and H. Wang. 2018. Study on the effect of Iron-Based deoxidizing inhibitors for coal spontaneous combustion prevention. Energies 11 (4):789. doi:10.1080/00102202.2019.1616181.
  • He, F., J. Wang, C. Hao, H. Wang, and X. Xing. 2016. Experimental study on the effect of oxygen consuming inhibitor in inhibiting coal spontaneous combustion. Journal of China Coal Society 41 (11):2780–85. doi:10.13225/j.cnki.jccs.2016.0324.
  • Huang, Z. A., G. Wang, Y. Zhang, Y. Yin, and X. Hu. 2022. Inhibition characteristics of a novel PAM/SA-Ca(OH)2 composite inhibitor to control coal spontaneous combustion. Fuel 314:122750. doi:10.1016/j.fuel.2021.122750.
  • Hu, S. G., and S. Xue. 2011. Gel fire suppressants for controlling underground heating. Journal of Coal Science and Engineering 17 (3):256–64. doi:10.1007/s12404-011-0306-y.
  • Kong, B., E. Wang, Z. Li, and W. Lu. 2019. Study on the feature of electromagnetic radiation under coal oxidation and temperature rise based on multifractal theory. Fractals 27 (3):1950038. doi:10.1142/S0218348X19500385.
  • Li, Z. 1996. Mechanism of Free Radical Reactions in Spontaneous Combustion of Coal. Journal of China University of Mining and Technology 25 (3):111–15.
  • Liang, Y. T., J. Zhang, L. C. Wang, H. Z. Luo, and T. Ren. 2019. Forecasting spontaneous combustion of coal in underground coal mines by index gases: A review. Journal of Loss Prevention in the Process Industries 57:208–22. doi:10.1016/j.jlp.2018.12.003.
  • Li, L., C. Y. Hao, R. C. Zhai, W. H. He, and C. B. Deng. 2023. Study on the mechanism of free radical scavenger TEMPO blocking in coal oxidation chain reaction. Fuel 33 (2):125853. doi:10.1016/j.fuel.2022.125853.
  • Li, J. H., Z. H. Li, Y. L. Yang, B. Kong, and C. J. Wang. 2018. Laboratory study on the inhibitory effect of free radical scavenger on coal spontaneous combustion. Fuel Processing Technology 171:350–60. doi:10.1016/j.fuproc.2017.09.027.
  • Li, J. H., Z. H. Li, Y. L. Yang, X. Y. Zhang, D. C. Yan, and L. Liu. 2017. Inhibitive effects of antioxidants on coal spontaneous combustion. Energy & Fuels: An American Chemical Society Journal, 31 (12):14180–90. fuels.7b02339. doi:10.1021/acs.energy.
  • Liu, P., L. Fan, Q. Li, and F. Zhong. 2021. Power ultrasound assisted coalbed methane enhancement recovery: Field application and performance evaluation in underground coal mine. Fuel 324 (A):124575. doi:10.1016/j.fuel.2022.124575.
  • Lopez, D. 1998. Effect of low-temperature oxidation of coal on hydrogen-transfer capability. Fuel 77 (14):1623–28. doi:10.1016/S0016-2361(98)00086-6.
  • Lu, W., B. Guo, G. Qi, W. Cheng, and W. Yang. 2020. Experimental study on the effect of preinhibition temperature on the spontaneous combustion of coal based on an MgCl2 solution. Fuel 265:117032. doi:10.1016/j.fuel.2020.117032.
  • Ma, D., B. T. Qin, S. Song, H. Liang, and A. Gao. 2017. An Experimental Study on the Effects of Air Humidity on the Spontaneous Combustion Characteristics of Coal. Combustion Science and Technology 189 (12):2209–19. doi:10.1080/00102202.2017.1368500.
  • Ma, L. Y., D. M. Wang, Y. Wang, H. H. Xin, G. L. Dou, and C. Xu. 2016. Experimental investigation on a sustained release type of inhibitor for retarding the spontaneous combustion of coal. Energy & Fuels: An American Chemical Society Journal 30 (11):8904–14. doi:10.1021/acs.energyfuels.6b01192.
  • Mishra, D. P. 2022. Effects of intrinsic properties, particle size and specific surface area on WOP and spontaneous combustion susceptibility of coal. Advanced Power Technology 33 (3):103454. doi:10.1016/j.apt.2022.103454.
  • Muduli, L., P. K. Jana, and D. P. Mishra. 2018. Wireless sensor network based fire monitoring in underground coal mines: A fuzzy logic approach. Process Safety and Environmental Protection 113 (B):435–47. doi:10.1016/j.psep.2017.11.003.
  • Onifade, M., and B. Genc. 2020. A review of research on spontaneous combustion of coal. International Journal of Mining Science and Technology 30 (3):303–11. doi:10.1016/j.ijmst.2020.03.001.
  • Pan, R. K., X. C. Li, H. Z. Li, J. K. Chao, H. L. Jia, and Z. Ma. 2022. Study on the effect of composite hydrogel inhibitors on the heat release characteristics of coal oxidation. Fuel 309:122019. doi:10.1016/j.fuel.2021.122019.
  • Qin, B. T., G. L. Dou, and D. M. Wang. 2016. Thermal analysis of vitamin C affecting low-temperature oxidation of coal. Ournal Wuhan University of Technology 31 (3):519–22. doi:10.1007/s11595-016-1402-z.
  • Ren, L. F., Q. W. Li, J. Deng, Y. Xiao, L. Ma, and W. -F. Wang. 2019. Inhibiting effect of CO2 on the oxidative combustion thermodynamics of coal. RSC Advances 9 (70):41126–34. doi:10.1039/C9RA08875J.
  • Ren, S. J., C. P. Wang, Y. Xiao, J. Deng, Y. Tian, J. -J. Song, X. -J. Cheng, and G. -F. Sun. 2020. Thermal properties of coal during low temperature oxidation using a grey correlation method. Fuel 260:116287. doi:10.1016/j.fuel.2019.116287.
  • Shi, X., Y. Zhang, X. Chen, Y. Zhang, and T. Ma. 2021. Numerical study on the oxidation reaction characteristics of coal under temperature-programmed conditions. Fuel Processing Technology 213 (0):106671. doi:10.1016/j.fuproc.2020.106671.
  • Slovák, V., and B. Taraba. 2012. Urea and CaCl2 as inhibitors of coal low-temperature oxidation. Journal of Thermal Analysis and Calorimetry 110 (1):363–67. doi:10.1007/s10973-012-2482-4.
  • Stach, E., M. T. Mackowsky, M. Teichmüller, G. H. Taylor, and D. Chandra. 1982. Stach’s Textbook of Coal Petrology. 3rd ed. Berlin, Germany: Gerbruder Borntraeger.
  • Sun, L. L., X. W. Lv, N. Liu, Q. GS, and H. QM. 2023. Spontaneous coal combustion prevention mechanisms of thermosensitive composite hydrogel: An experimental study. Fuel 331 (2):125796. doi:10.1016/j.fuel.2022.125796.
  • Taraba, B., and Z. Pavelek. 2014. Investigation of the spontaneous combustion susceptibility of coal using the pulse flow calorimetric method: 25 years of experience. Fuel 125:101–05. doi:10.1016/j.fuel.2014.02.024.
  • Varinder, S., R. P. Gupta, and M. K. Arora. 2016. Environmental impact studies in coalfields in India: A case study from Jharia coal-field. Renew Sust Energ Rev 53:1222–39. doi:10.1016/j.rser.2015.09.072.
  • Wang, X. F. 2009. Structure and Characterization of Complexes Formed of Ca2+ and Coal Active Group. Fuxin, China: Liaoning Technical University.
  • Wang, J. R. 2011. Inhibition mechanism of preventing spontaneous combustion of coal. Beijing, China: China Coal Industry Press.
  • Wang, H., B. Z. Dlugogorski, and E. M. Kennedy. 1999. Theoretical analysis of reaction regimes in low-temperature oxidation of coal. Fuel 78 (9):1073–81. doi:10.1016/S0016-2361(99)00016-2.
  • Wang, H., B. Z. Dlugogorski, and E. M. Kennedy. 2003. Coal oxidation at low temperatures: Oxygen consumption, oxidation products, reaction mechanism and kinetic modelling. Progress in Energy and Combustion Science 29 (6):487–513. doi:10.1016/S0360-1285(03)00042-X.
  • Wang, K., L. Hu, J. Deng, and Y. Zhang. 2023. Multiscale thermal behavioral characterization of spontaneous combustion of pre-oxidized coal with different air exposure time. Energy 262 (A):125397. doi:10.1016/j.energy.2022.125397.
  • Wang, L. Y., S. G. Jiang, Z. Y. Wu, and W. Q. Zhang. 2009. A new idea of inhibition on coal spontaneous combustion by ionic liquid. Safety in Coal Mines 40 (8):90–92. doi:10.13347/j.cnki.mkaq.2009.08.033.
  • Wang, J., Y. L. Zhang, J. F. Wang, Y. Wu, and C. S. Zhou. 2020. Synergistic inhibition effect of inorganic salt inhibitor and free radical scavenger on coal spontaneous combustion. Journal of China Coal Society 45 (12):4132–43. doi:10.13225/j.cnki.jccs.2019.1431.
  • Watanabe, W. S., and D. K. Zhang. 2001. The effect of inherent and added inorganic matter on low-temperature oxidation reaction of coal. Fuel Processing Technology 74 (3):145–60. doi:10.1016/S0378-3820(01)00237-5.
  • Wen, H., F. Zhang, Y. Jin, and W. Liu. 2011. Experimental research on effect of sulfur on characteristic parameters of coal spontaneous combustion. Safety in Coal Mines 42:5–7.
  • Xi, Z. L., K. Gao, X. Guo, M. Li, and C. Ren. 2021. Mechanistic study of the inhibition of active radicals in coal by catechin. Combustion Science and Technology 193 (11):1931–48. doi:10.1080/00102202.2020.1718122.
  • Xu, T., D. M. Wang, and Q. L. He. 2013. The study of the critical moisture content at which coal has the most high tendency to spontaneous combustion. International Journal of Coal Preparation and Utilization 33 (3):117–27. doi:10.1080/19392699.2013.769435.
  • Zhan, J., H. H. Wang, S. N. Song, Y. Han, and J. Li. 2011. Role of an additive in retarding coal oxidation at moderate temperatures. Proceedings of the Combustion Institute: International Symposium on Combustion 33 (2):2515–22. doi:10.1016/j.proci.2010.06.046.
  • Zhao, J. H., and X. H. Zhang. 2015. Experimental study of mine grout injection plastic fire prevention materials flow properties. Journal of China Coal Society 40 (2):383–88. doi:10.13225/j.cnki.jccs.2014.0267.
  • Zhou, B., S. Yang, X. Jiang, and W. Song. 2023. Experimental study on oxygen adsorption capacity and oxidation characteristics of coal samples with different particle sizes. Fuel 331 (2):125954. doi:10.1016/j.fuel.2022.125954.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.