146
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Microemulsion fuel formulation from used cooking oil with carbinol as the dispersion phase

& ORCID Icon
Pages 4107-4126 | Received 19 Jul 2022, Accepted 31 Mar 2023, Published online: 20 Apr 2023

References

  • Abdullah, F. A., I. Ab Raman, and D. Derawi. 2019. Pseudo-ternary phase behaviour of palm-based microemulsion insecticides. Malaysian Journal of Chemistry 21 (2):1–7.
  • Abrar, I., and A. N. Bhaskarwar. 2018a. Formulation and extension of diesel-based microemulsion fuels for compression ignition engines. INAE Letters 3 (1):33–39. doi:10.1007/s41403-018-0037-0.
  • Abrar, I. and A. N. Bhaskarwar, 2018b, November. Performance of microemulsion fuels as an alternative for diesel engine. In Internal Combustion Engine Division Fall Technical Conference, San Diego, California, (Vol. 51982, p. V001T02A001). American Society of Mechanical Engineers.
  • Abrar, I., and A. N. Bhaskarwar. 2020. Effect of alcohol on the properties of water-in-diesel microemulsion fuels. Environmental Progress & Sustainable Energy 39 (5):e13422. doi:10.1002/ep.13422.
  • Al-Wahaibi, T., Y. Al-Wahaibi, A. R. Al-Hashmi, F. S. Mjalli, and S. Al-Hatmi. 2015. Experimental investigation of the effects of various parameters on viscosity reduction of heavy crude by oil–water emulsion. Petroleum Science 12 (1):170–76. doi:10.1007/s12182-014-0009-2.
  • Arsene, M. L., I. Răut, M. Călin, M. L. Jecu, M. Doni, and A. M. Gurban. 2021. Versatility of reverse micelles: From biomimetic models to nano (bio) sensor design. Processes 9 (2):345. doi:10.3390/pr9020345.
  • Ashihmin, A., M. Piskunov, I. Roisman, and V. Yanovsky. 2020. Thermal stability control of the water-in-diesel microemulsion fuel produced by using a nonionic surfactant combined with aliphatic alcohols. Journal of Dispersion Science and Technology 41 (5):771–78. doi:10.1080/01932691.2019.1634583.
  • Bora, P., J. Boro, L. Jyoti Konwar, and D. Deka. 2016. Formulation of microemulsion based hybrid biofuel from waste cooking oil – a comparative study with biodiesel. Journal of the Energy Institute 89 (4):560–68. ISSN 1743-9671. doi:10.1016/j.joei.2015.07.001.
  • Bora, P., J. Boro, L. J. Konwar, and D. Deka. 2016. A comparative study of Mesua ferrea L. based hybrid fuel with diesel fuel and biodiesel. Energy Sources, Part A: Recovery, utilization,andenvironmentaleffects 38 (9):12791285. doi:10.1080/15567036.2012.747036.
  • Callender, S. P., and S. D. Wettig. 2021. Phase behavior of non-ionic surfactant-medium chain triglyceride- water microemulsion systems. Journal of Surfactants and Detergents 24 (4):603–29. doi:10.1002/jsde.12510.
  • Changhang, L., H. Bai, L. Yuanye, J. Bian, Y. Dong, and H. Xu. 2018. Life-cycle assessment for coal-based methanol production in China. Journal of Cleaner Production 188:1004–17. ISSN0959-6526. doi:10.1016/j.jclepro.2018.04.051.
  • Charoensaeng, A., S. Khaodhiar, D. A. Sabatini, and N. Arpornpong. 2018. Exhaust emissions of a diesel engine using ethanol-in-palm oil/diesel microemulsion-based biofuels. Environmental Engineering Research 23 (3):242–49. doi:10.4491/eer.2017.204.
  • Chen, H., S. Xin, H. Jingjing, and B. Xie. 2019. Investigation on combustion and emission characteristics of a common rail diesel engine fueled with diesel/n-pentanol/methanolblends. Energy 167:297–311. ISSN0360-5442. doi:10.1016/j.energy.2018.10.199.
  • Demirbas, A. 2008a. Biomethanol production from organic waste materials, energy sources, part a: Recovery. Utilization, and Environmental Effects 30 (6):565–72. doi:10.1080/15567030600817167.
  • Demirbas, A. 2008b. Vegetable Oils and Animal Fats. In Biodiesel: A realistic fuel alternative for diesel engines, 65–110. London: Springer. doi:10.1007/978-1-84628-995-8_3.
  • Devarajan, Y., D. Munuswamy, B. Nagappan, and G. Subbiah. 2019. Experimental assessment of performance and exhaust emission characteristics of a diesel engine fuelled with Punnai biodiesel/butanol fuel blends. Petroleum Science 16 (6):1471–78. doi:10.1007/s12182-019-00361-9.
  • Gugule, S., F. Fatimah, C. P. Maanari, and T. E. Tallei. 2020. Data on the use of virgin coconut oil and bioethanol produced from sugar palm sap as raw materials for biodiesel synthesis. Data in Brief 29:105199. doi:10.1016/j.dib.2020.105199.
  • Iqbal, N., M. Pant, S. Dubey, N. Sogan, N. Patanjali, and S. N. Naik. 2019. Preparation of neem oil microemulsion using biodiesel waste for larvae control. International Journal of Mosquito Research 6 (1):104–08.
  • Ja’afar, M., R. M. Safiah, R. O. Khalid, W. Nur Aini Wan Mokhtar, and S. Ramli. 2019. Coconut oil based microemulsion formulations for hair care product application. Sains Malaysiana 48 (3):599–605. doi:10.17576/jsm-2019-4803-12.
  • Kibbey, T. C., L. Chen, L. D. Do, and D. A. Sabatini. 2014. Predicting the temperature-dependent viscosity of vegetable oil/diesel reverse microemulsion fuels. Fuel 116:432–37. doi:10.1016/j.fuel.2013.08.021.
  • Kumar, H., L. Jyoti Konwar, M. Aslama, and A. Kumar Sarma. 2016. Performance, combustion and emission characteristics of a direct injection VCR CI engine using a Jatropha curcas oil microemulsion: A comparative assessment with JCO B100. RSC Advances, 6 (6):37646–55. JCOB20andpetrodiesel.RSCAdv. doi:10.1039/C6RA04795E.
  • Kumar, H., A. K. Sarma, and P. Kumar. 2020. A comprehensive review on preparation, characterization, and combustion characteristics of microemulsion based hybrid biofuels. Renewable and Sustainable Energy Reviews 117:109498. ISSN 1364-0321. doi:10.1016/j.rser.2019.109498.
  • Leng, L., P. Han, X. Yuan, J. Li, and W. Zhou. 2018. Biodiesel microemulsion upgrading and thermogravimetric study of bio-oil produced by liquefaction of different sludges. Energy 153:1061–72. doi:10.1016/j.energy.2018.04.087.
  • Liang, J., Y. Qian, X. Yuan, L. Leng, G. Zeng, L. Jiang, J. Shao, Y. Luo, X. Ding, Z. Yang, et al. 2018. Span80/Tween80 stabilized bio-oil-in-diesel microemulsion: Formation and combustion. Renewable Energy 126:774–82. doi:10.1016/j.renene.2018.04.010.
  • Lucia, A., P. G. Argudo, E. Guzmán, R. G. Rubio, and F. Ortega. 2017. Formation of surfactant free microemulsions in the ternary system water/eugenol/ethanol. Colloids and Surfaces A Physicochemical and Engineering Aspects 521:133–40. doi:10.1016/j.colsurfa.2016.04.062.
  • Maszewska, M., A. Florowska, E. Dłużewska, M. Wroniak, K. Marciniak-Lukasiak, and A. Żbikowska. 2018. Oxidative stability of selected edible oils. Molecules 23 (7):1746. doi:10.3390/molecules23071746.
  • Murray, R., G. King, and R. Wyse-Mason. 2019. Micro-emulsification vs. transesterification: An investigation of the efficacy of methanol use in improving vegetable oil engine performance. Biofuels 12 (9):1165–74. doi:10.1080/17597269.2019.1598316.
  • Najjar, R., L. Zarei-Gharehbaba, M. Tazerout, and S. R. Patil. 2020. Stable gasoil/sunflower oil fuel microemulsions prepared by using methylimidazolium based ionic liquids as surfactant. Journal of Molecular Liquids 298:111970. doi:10.1016/j.molliq.2019.111970.
  • Phasukarratchai, N. 2019. Phase behavior and biofuel properties of waste cooking oil-alcohol-diesel blending in microemulsion form. Fuel 243:125–32. ISSN 0016-2361. doi:10.1016/j.fuel.2019.01.003.
  • Prasad, S. S., A. Singh, and S. Prasad. 2020. Degummed pongamia oil–ethanol microemulsions as novel alternative ci engine fuels for remote small island developing states: Preparation, characterization, engine performance and emissions characteristics. Renewable Energy 150:401–11. doi:10.1016/j.renene.2019.12.150.
  • Raja, S., J. Mayakrishnan, S. Nandagopal, and S. Elumalai. 2021. Effect of compression ratio on the performance, emission, and combustion characteristics of CI engine using waste cooking oil and its emulsion as fuel. In Advances in materials research, ed. G. Kumaresan, N. Siva Shanmugam, V. Dhinakaran, 701–11. Singapore: Springer.
  • Rajendran, V. and D. Balasubramanian, 2020.Influence of injection parameters on performance and emission of di diesel engine fuelled by 1,4-dioxane emulsified fuel. SAE Technical Paper 2020-28-0518. doi:10.4271/2020-28-0518.
  • Rajendran, V., D. Balasubramanian, A. Deep, and S. K. Mahla. 2021. Effect of 1,4-dioxane emulsified fuel on diesel engine performance and emission operating with varying injection timing. In Alternative fuels and advanced combustion techniques as sustainable solutions for internal combustion engines. energy, environment, and sustainability, A. P. Singh, D. Kumar, and A. K. Agarwal. ed., Singapore: Springer. doi:10.1007/978-981-16-1513-9_9.
  • Schoettl, S., J. Marcus, O. Diat, D. Touraud, W. Kunz, T. Zemb, and D. Horinek. 2014. Emergence of surfactant-free micelles from ternary solutions. Chemical Science 5 (8):2949–54. doi:10.1039/C4SC00153B.
  • Senthil Kumar, M., and M. Jaikumar. 2014. A comprehensive study on performance, emission and combustion behavior of a compression ignition engine fuelled with WCO (waste cooking oil) emulsion as fuel. Journal of the Energy Institute, 87 (3):263–71. ISSN 1743-9671. doi:10.1016/j.joei.2014.03.001.
  • Shenavaeizare, T., A. Khoshsima, and B. ZareNezhad. 2021. Development of surfactant-free microemulsion hybrid biofuels employing halophytic salicornia oil/ethanol and oxygenated additives. Fuel 292:120249. doi:10.1016/j.fuel.2021.120249.
  • Singh, D., A. Deep, S. S. Sandhu, and A. K. Sarma. 2019. Experimental assessment of combustion, performance and emission characteristics of a CI engine fueled with biodiesel and hybrid fuel derived from waste cooking oil. Environmental Progress & Sustainable Energy 38 (4):13112. doi:10.1002/ep.13112.
  • Singh, N., H. Kumar, M. K. Jha, and A. K. Sarma. 2015. Complete heat balance, performance, and emission evaluation of a CI engine fueled with Mesua ferrea methyl and ethyl ester’s blends with petrodiesel. Journal of Thermal Analalysis and Calorimetry 122 (2):907–16. doi:10.1007/s10973-015-4777-8.
  • Trung Truong, T., X. Phuong Nguyen, V. Viet Pham, L. Van Vang, L. Anh Taun, and V. Tam Bui. 2021. Effect of alcohol additives on diesel engine performance: A review. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–25. doi:10.1080/15567036.2021.2011490.
  • Wardana, I. N. G., A. Widodo, and W. Wijayanti. 2018. Improving vegetable oil properties by transforming fatty acid chain length in jatropha oil and coconut oil blends. Energies 11 (2):394. doi:10.3390/en11020394.
  • Yun, J. M., and J. Surh. 2012. Fatty acid composition as a predictor for the oxidation stability of Korean vegetable oils with or without induced oxidative stress. Preventive Nutrition and Food Science 17 (2):158. doi:10.3746/pnf.2012.17.2.158.
  • Zemb, T. N., M. Klossek, T. Lopian, J. Marcus, S. Schöettl, D. Horinek, S. F. Prevost, D. Touraud, O. Diat, S. Marčelja, et al. 2016. How to explain microemulsions formed by solvent mixtures without conventional surfactants. Proceedings of the National Academy of Sciences 113 (16):4260–65. doi:10.1073/pnas.1515708113.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.