64
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of N2 and CO2 dilution on syngas/air deflagration characteristics in narrow gap disk burner

, , , , , & show all
Pages 4870-4885 | Received 19 Sep 2022, Accepted 19 Dec 2022, Published online: 26 Apr 2023

References

  • Askari, O., Z. Wang, K. Vien, M. Sirio, and H. Metghalchi. 2017. On the flame stability and laminar burning speeds of syngas/O2/He premixed flame. Fuel 190:90–103. doi:10.1016/j.fuel.2016.11.042.
  • Casleton, K. H., R. W. Breault, and G. A. Richards. 2008. System issues and tradeoffs associated with syngas production and combustion. Combustion Science and Technology 180:1013–52. doi:10.1080/00102200801962872.
  • Daou, J., and M. Matalon. 2002. Influence of conductive heat-losses on the propagation of premixed flames in channels. Combustion and Flame 128:321–39. doi:10.1016/S0010-2180(01)00362-5.
  • Diao, S., X. Wen, Z. Guo, W. He, H. Deng, and F. Wang. 2022a. Experimental study of explosion dynamics of syngas flames in the narrow channel. International Journal of Hydrogen Energy 47:17808–20. doi:10.1016/j.ijhydene.2022.03.258.
  • Diao, S., X. Wen, Z. Guo, W. He, H. Deng, and F. Wang. 2022b. Flame propagation characteristics of syngas-air in the hele-Shaw duct with different equivalence ratios and ignition positions. ACS Omega 7:20118–28. doi:10.1021/acsomega.2c01960.
  • Dinesh, K. R., K. H. Luo, M. P. Kirkpatrick, and W. Malalasekera. 2013. Burning syngas in a high swirl burner: Effects of fuel composition. International Journal of Hydrogen Energy 38:9028–42. doi:10.1016/j.ijhydene.2013.05.021.
  • Jang, H. J., G. M. Jang, and N. I. Kim. 2019. Unsteady propagation of premixed methane/propane flames in a mesoscale disk burner of variable-gaps. Proceedings of the Combustion Institute 37:1861–68. doi:10.1016/j.proci.2018.06.112.
  • Jang, H. J., S. M. Lee, and N. I. Kim. 2020. Effects of ignition disturbance on flame propagation of methane and propane in a narrow-gap-disk-burner. Combustion and Flame 215:124–33. doi:10.1016/j.combustflame.2020.01.019.
  • Jiang, L., H. Su, J. Huo, X. Li, H. Yang, and D. Zhao. 2019. Experimental study on propane/air flame propagation characteristics in a disc-like gap chamber. Combustion Science and Technology 191:1168–83. doi:10.1080/00102202.2018.1516647.
  • Kadowaki, S., H. Suzuki, and H. Kobayashi. 2005. The unstable behavior of cellular premixed flames induced by intrinsic instability. Proceedings of the Combustion Institute 30:169–76. doi:10.1016/j.proci.2004.07.041.
  • Kee, R. J., F. M. Rupley, J. A. Miller, M. E. Coltrin, J. F. and Grcar. et al . 2004. CHEMKIN release 4.0, reaction design. San Diego, CA: Inc 185.
  • Khan, A. R., S. Anbusaravanan, L. Kalathi, R. Velamati, and C. Prathap. 2017. Investigation of dilution effect with N2/CO2 on laminar burning velocity of premixed methane/oxygen mixtures using freely expanding spherical flames. Fuel 196:225–32. doi:10.1016/j.fuel.2017.01.086.
  • Kurdyumov, V. N., and E. Fernandez-Tarrazo. 2002. Lewis number effect on the propagation of premixed laminar flames in narrow open ducts. Combustion and Flame 128:382–94. doi:10.1016/S0010-2180(01)00358-3.
  • Kwon, O. C., G. Rozenchan, and C. K. Law. 2002. Cellular instabilities and self-acceleration of outwardly propagating spherical flames. Proceedings of the Combustion Institute 29:1775–83. doi:10.1016/S1540-7489(02)80215-2.
  • Laurence, L. C., and D. Ashenafi. 2012. Syngas treatment unit for small scale gasification-application to IC engine gas quality requirement.
  • Lee, S. M., H. J. Jang, and N. I. Kim. 2021. Premixed flame propagation of CH4 and C3H8 in a narrow-gap disk burner using constant-volume processes at elevated-pressure. Combustion and Flame 231:111482. doi:10.1016/j.combustflame.2021.111482.
  • Lee, J., Y. Yun, S. Chung, S. Kang, J. and Ryu. et al . 2014. Application of multiple swirl burners in pilot-scale entrained bed gasifier for short residence time. Fuel 117:1052–60. doi:10.1016/j.fuel.2013.10.013.
  • Li, J., Z. Zhao, A. Kazakov, M. Chaos, F. L. Dryer, and J. J. Scire Jr. 2007. A comprehensive kinetic mechanism for CO, CH2O, and CH3OH combustion. International Journal of Chemical Kinetics 39:109–36. doi:10.1002/kin.20218.
  • Prathap, C., A. Ray, and M. R. Ravi. 2012. Effects of dilution with carbon dioxide on the laminar burning velocity and flame stability of H2–CO mixtures at atmospheric condition. Combustion and Flame 159:482–92. doi:10.1016/j.combustflame.2011.08.006.
  • Sahoo, B. B., N. Sahoo, and U. K. Saha. 2012. Effect of H2: CO ratio in syngas on the performance of a dual fuel diesel engine operation. Applied Thermal Engineering 49:139–46. doi:10.1016/j.applthermaleng.2011.08.021.
  • Sánchez-Sanz, M. 2012. Premixed flame extinction in narrow channels with and without heat recirculation. Combustion and Flame 159:3158–67. doi:10.1016/j.combustflame.2012.05.006.
  • Shang, R., Y. Zhang, M. Zhu, Z. Zhang, D. Zhang, and G. Li. 2016. Laminar flame speed of CO2 and N2 diluted H2/CO/air flames. International Journal of Hydrogen Energy 41:15056–67. doi:10.1016/j.ijhydene.2016.05.064.
  • Shi, X., J. Pan, C. Jiang, J. Li, Y. Zhu, and E. K. Quaye. 2022. Effect of obstacles on the detonation diffraction and subsequent re-initiation. International Journal of Hydrogen Energy 47:6936–54. doi:10.1016/j.ijhydene.2021.12.026.
  • Veiga-López, F., D. Martínez-Ruiz, E. Fernández-Tarrazo, and M. Sánchez-Sanz. 2019. Experimental analysis of oscillatory premixed flames in a Hele-Shaw cell propagating towards a closed end. Combustion and Flame 201:1–11. doi:10.1016/j.combustflame.2018.12.005.
  • Yang, T., Q. He, J. Ning, and J. Li. 2022. Experimental and numerical studies on detonation failure and re-initiation behind a half-cylinder. International Journal of Hydrogen Energy 47:12711–25. doi:10.1016/j.ijhydene.2022.01.230.
  • Zhang, B. 2016. The influence of wall roughness on detonation limits in hydrogen–oxygen mixture. Combustion and Flame 169:333–39. doi:10.1016/j.combustflame.2016.05.003.
  • Zhang, B., Y. Li, and H. Liu. 2021. Ignition behavior and the onset of quasi-detonation in methane-oxygen using different end wall reflectors. Aerospace Science and Technology 116:106873. doi:10.1016/j.ast.2021.106873.
  • Zhang, B., Y. Li, and H. Liu. 2022. Analysis of the ignition induced by shock wave focusing equipped with conical and hemispherical reflectors. Combustion and Flame 236:111763. doi:10.1016/j.combustflame.2021.111763.
  • Zhang, B., and H. Liu. 2017. The effects of large scale perturbation-generating obstacles on the propagation of detonation filled with methane–oxygen mixture. Combustion and Flame 182:279–87. doi:10.1016/j.combustflame.2017.04.025.
  • Zhou, G., L. Jiang, C. Gu, X. Wang, W. Yang, and D. Zhao. 2020. Experimental investigation on ignition and combustion characteristics of n-butane/air mixtures by glow plug in miniature chamber. Fuel 274:117857. doi:10.1016/j.fuel.2020.117857.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.