166
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Experimental investigation of salinity gradient solar pond with nano-based phase change materials

ORCID Icon, , , &
Pages 5465-5480 | Received 08 Feb 2023, Accepted 12 Apr 2023, Published online: 07 May 2023

References

  • Afsharpanah, F., and S. S. M. Ajarostaghi. 2022. Compound heat transfer augmentation of a shell-and-coil ice storage unit with metal-oxide nano additives and connecting plates. Nanomaterials 12 (6):1–17. doi:10.3390/nano12061010.
  • Afsharpanah, F., G. Cheraghian, et al. 2022. Utilization of carbon-based nanomaterials and plate-fin networks in a cold PCM container with application in air conditioning of buildings. Nanomaterials 12 (11):19–27. doi:10.3390/nano12111927.
  • Afsharpanah, F., K. Pakzad, et al. 2022. Assessment of the charging performance in a cold thermal energy storage container with two rows of serpentine tubes and extended surfaces. Journal of Energy Storage 51:1044–64. doi:10.1016/j.est.2022.104464.
  • Ali, M. M., O. K. Ahmed, and E. F. Abbas. 2020. Performance of solar pond integrated with photovoltaic/thermal collectors. Energy Reports 6 (2):3200–11. doi:10.1016/j.egyr.2020.11.037.
  • Al-Juwayhel, F., and M. M. El-Refaee. 1998. Thermal performance of a combined packed bed ± solar pond system -a numerical study. Applied Thermal Engineering 18 (18):1207–23. doi:10.1016/S1359-4311(97)00101-4.
  • AL-Musawi, O. A. H., A. A. Khadom, H. B. Manhood, and M. S. Mahdi. 2020. Solar pond as a low grade energy source for water desalination and power generation: A short review. Renewable Energy and Environmental Sustainability 5 (4):1–13. doi:10.1051/rees/2019008.
  • Amigo, J., F. Meza, and F. Suárez. 2017. A transient model for temperature prediction in a salt-gradient solar pond and the ground beneath it. Energy 18:1–42. doi:10.1016/j.energy.2017.05.063.
  • Amigo, J., and F. Suárez. 2017. Ground heat storage beneath salt-gradient solar ponds under constant heat demand. Energy 13:1–39. doi:10.1016/j.energy.2017.12.066.
  • Aramesh, M., F. Pourfayaz, and A. Kasaeian. 2017. Transient heat extraction modeling method for a rectangular type salt gradient solar pond. Energy Conversion and Management 132:316–26. doi:10.1016/j.enconman.2016.11.036.
  • Aravind Kumar J. 2019. One pot Green Synthesis of Nano magnesium oxide-carbon composite: Preparation, characterization and application towards anthracene adsorption. Journal of Cleaner Production, 237 117691 10.1016/j.jclepro.2019.117691
  • Bibin, C., H. Al-Hussaini, and A. N. Campbell. 2023. New theoretical modelling of heat transfer in solar ponds. Environmental Quality Management. doi:10.1002/tqem.21996.
  • Chaitanya, V. B. 2023. Assessment of metro-induced vibrations on photo-voltaic modules for their solar energy degradation potential. doi:10.1016/j.solener.2023.03.025.
  • Choubani, K., and R. Ennetta. 2022. Effects of inlet operational parameters on the combined salt gradient solar pond-direct contact membrane distillation system. Solar Energy 244 (9):289–97. doi:10.1016/j.solener.2022.08.014.
  • Colarossi, D., and P. Principi. 2022. Experimental investigation and optical visualization of a salt gradient solar pond integrated with PCM. Solar Energy Materials and Solar Cells 234:1114–25. doi:10.1016/j.solmat.2021.111425.
  • Devarajan, Y. 2023. Detailed studies on employing fish canning waste as a partial alternative in a research diesel engine: Waste to energy initiation. Environ Prog Sustainable Energy 14130. doi:10.1002/ep.14130.
  • Devarajan, Y., D. Munuswamy, G. Subbiah, and R. Mishra. 2023. Critical operating parameters of solar flat plate collectors using CuO nanoparticles of different volume fractions subjected to natural convection. Env Prog and Sustain Energy. doi:10.1002/ep.14125.
  • Esakki, T., J. P. Milhazes, and H. L. Pina. 2022. An Experimental Study on Biodiesel Production and Impact of EGR in a CRDI Diesel Engine Propelled with Leather Industry Waste Fat Biodiesel. Fuel 321. doi:10.1016/j.fuel.2022.123995.
  • Karthick, K., S. Suresh, and K. S. Abhishek. 2022. Effect of a eutectic mixture of D-Mannitol and magnesium chloride hexahydrate on reversible solar thermoelectric power generation: an experimental study. Thermal Science and Engineering Progress 36 (12):1015–23. doi:10.1016/j.tsep.2022.101523.
  • Kurt, H., M. Ozkaymak, and A. K. Binark. 2006. Experimental and numerical analysis of sodium-carbonate salt gradient solar-pond performance under simulated solar-radiation. Applied Energy 83:324–42. doi:10.1016/j.apenergy.2005.03.001.
  • Li, D. 2015. Numerical analysis on thermal performance of roof contained PCM of a single residential building. Energy Conversion and Management 100:147–56. doi:10.1016/j.enconman.2015.05.014.
  • Li, D. 2020. Optical and thermal performance of glazing units containing PCM in buildings: A review. Construction and Building Materials 233. 117327. doi:10.1016/j.conbuildmat.2019.117327.
  • Li, N., P. Gao, and C. Zhang. 2022. Soret and Dufour effects on double-diffusive convection in a salinity gradient solar pond. Solar Energy 246 (11):66–73. doi:10.1016/j.solener.2022.07.052.
  • Moffat, R. J. 1988. Describing the uncertainties in experimental results. Experimental Thermal and Fluid Science 1:3–17. doi:10.1016/0894-1777(88)90043-X.
  • Monjezi, A. A., and A. N. Campbell. 2016. A comprehensive transient model for the prediction of the temperature distribution in a solar pond under Mediterranean conditions. Solar Energy 135:297–307. doi:10.1016/j.solener.2016.06.011.
  • Montalà, M. 2019. Stability analysis of an industrial salinity gradient solar pond. Solar Energy 180 (August 2018):216–25. doi:10.1016/j.solener.2019.01.017.
  • Montalà, M. 2022. Energy, exergy and thermoeconomic analysis of an industrial solar pond. Solar Energy. 242(8):143–56. doi:10.1016/j.solener.2022.07.014.
  • Nagappan, B., S. S. M. Ajarostaghi, and M. Arıcı. 2020. Influence of antioxidant additives on performance and emission characteristics of beef tallow biodiesel-fuelled C.I engine. Environmental Science and Pollution Research 28:12041–55. doi:10.1007/s11356-020-09065-9.
  • Noel, H., P. Glouannec, and J. P. Velly. 1996. Mathematical modelling and experimental validation of the thermal behaviour of an aquacultural pond. Applied Energy 55 (I):47–64. doi:10.1016/S0306-2619(96)00016-5.
  • Nower, M., A. Elashaal, and S. El-Serafy. 2020. Solar Pond Performance Enhances Nonconventional Water Resource Availability. International Journal of Engineering and Advanced Technology 9 (4):1043–47. doi:10.35940/ijeat.d7807.049420.
  • Poyyamozhi, N, and A. Karthikeyan. 2022. Comparative energy storage study on solar pond with PCM coupled with different Nano particles. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 236 (24):11564–11570. doi:10.1177/09544062221114789.
  • Poyyamozhi, N, and A. Karthikeyan. 2022. Enhancement of solar pond effectiveness through addition of pcm to low convective zone. Frontiers in Heat and Mass Transfer 18. doi:10.5098/hmt.18.13.
  • Rajmohan, T. 2023. Thermal management using Nano Coated Heat Sink For Electric Vehicle Battery Cooling. Environmental Quality Management 1–10. doi:10.1002/tqem.21996.
  • Ugle, V. V., Arulprakasajothi, M., Padmanabhan, S., Devarajan, Y., Lakshmaiya, N., & Subbaiyan, N. 2023. Investigation of heat transport characteristics of titanium dioxide nanofluids with corrugated tube. Environmental Quality Management, 1–11. doi:10.1002/tqem.21999.
  • Zhao, J., J. Gao, J. Liao, B. Zhou, Y. Bai, and T. Qiang. 2022. An experimental study of the heat storage and the discharge performance and an economic performance analysis of a flat plate phase change material (PCM) storage tank. Energies 15 (4023):1–17. doi:10.3390/en15114023.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.