67
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Analysis of fracture structure evolution of bituminous coal subjected to in situ steam pyrolysis combined with in situ micro-computed tomography technology

, , , &
Pages 6010-6026 | Received 19 Jan 2023, Accepted 08 May 2023, Published online: 15 May 2023

References

  • Akbarzadeh, H., and R. J. Chalaturnyk. 2014. Structural changes in coal at elevated temperature pertinent to under-ground coal gasification: A review. International journal of coal geology 131:126–46. doi:10.1016/j.coal.2014.06.009.
  • Feng, G., Y. Kang, Z. Sun, X. Wang, and Y. Hu. 2019. Effects of supercritical CO2 adsorption on the mechanical characteristics and failure mechanisms of shale. Energy 173:870–82. doi:10.1016/j.energy.2019.02.069.
  • Feng, G., Y. Kang, X. Wang, Y. Hu, and X. Li. 2020. Investigation on the failure characteristics and fracture classification of shale under Brazilian test conditions. Rock Mechanics & Rock Engineering 53 (7):3325–40. doi:10.1007/s00603-020-02110-6.
  • Gao, Z., M. Zheng, D. Zhang, and W. Zhang. 2016. Low temperature pyrolysis properties and kinetics of non-coking coal in Chinese western coals. Journal of the Energy Institute 89 (4):544–59. doi:10.1016/j.joei.2015.07.002.
  • Geng, C., S. Li, C. Yue, and Y. Ma. 2016. Pyrolysis characteristics of bituminous coal. Journal of the Energy Institute 89 (4):725–30. doi:10.1016/j.joei.2015.04.004.
  • Guan, J., Q. Z. Yu, G. Wang, M. Li, W. Wang G, and Z. Pang 2019. Characteristics of volatile release rate and fuel nitrogen conversion for three typical coals under high temperature fast pyrolysis. IOP conference series. Earth and environmental science. 227, (4), 42049. doi: 10.1088/1755-1315/227/4/042049
  • Huang, X., D. Yang, and Z. Kang. 2020. Study on the pore and fracture connectivity characteristics of oil shale pyrolyzed by superheated steam. Energies 13 (21):5716. doi:10.3390/en13215716.
  • Huang, X., D. Yang, and Z. Kang. 2021. Three-phase segmentation method for organic matter recognition in source rocks via CT images: A case study on oil shale pyrolyzed by steam. Energy Fuels 35 (12):10075–85. doi:10.1021/acs.energyfuels.1c00917.
  • Kelly, K. E., D. Wang, M. Hradisky, G. D. Silcox, P. J. Smith, E. G. Eddings, and D. W. Pershing. 2016. Underground coal thermal treatment as a potential low-carbon energy source. Fuel Processing Technology 144:8–19. doi:10.1016/j.fuproc.2015.12.006.
  • Li, H., Z. Feng, C. Zhang, and P. Zhao. 2022. Characterization of coal pore structure and matrix compressibility by water vapor injection. Natural Resources Research 31 (5):2869–83. doi:10.1007/s11053-022-10109-9.
  • Liu, J., Y. Kang, M. Chen, L. You, T. Zhang, X. Gao, and Z. Chen. 2021. Investigation of enhancing coal permeability with high-temperature treatment. Fuel 290:120082. doi:10.1016/j.fuel.2020.120082.
  • Liu, W., G. Wang, D. Han, H. Xu, and X. Chu. 2021. Accurate characterization of coal pore and fissure structure based on CT 3D reconstruction and NMR. Journal of Natural Gas Science & Engineering 96:104242. doi:10.1016/j.jngse.2021.104242.
  • Liu, P., D. Zhang, L. Wang, Y. Zhou, T. Pan, and X. Lu. 2016. The structure and pyrolysis product distribution of lignite from different sedimentary environment. Applied Energy 163:254–62. doi:10.1016/j.apenergy.2015.10.166.
  • Lu, Y., Y. Kang, M. Chen, L. You, Y. Tu, and J. Liu. 2021. Investigation of oxidation and heat treatment to improve mass transport ability in coals. Fuel 283:118840. doi:10.1016/j.fuel.2020.118840.
  • Mahanta, B., V. Vishal, P. G. Ranjith, and T. N. Singh. 2020. An insight into pore-network models of high-temperature heat-treated sandstones using computed tomography. Journal of Natural Gas Science & Engineering 77:103227. doi:10.1016/j.jngse.2020.103227.
  • Meng, T., J. Xie, X. Li, J. Ma, and Y. Yang. 2020. Experimental study on the evolutional trend of pore structures and fractal dimension of low-rank coal rich clay subjected to a coupled thermo-hydro-mechanical-chemical environment. Energy 203:117838. doi:10.1016/j.energy.2020.117838.
  • Meng, T., Y. Xue, J. Ma, Y. Yang, W. Liu, J. Zhang, and E. Li. 2021. Evolution of permeability and microscopic pore structure of sandstone and its weakening mechanism under coupled thermo-hydro-mechanical environment subjected to real-time high temperature. Engineering Geology 280:105955. doi:10.1016/j.enggeo.2020.105955.
  • Ni, X., J. Miao, R. Lv, and X. Lin. 2017. Quantitative 3D spatial characterization and flow simulation of coal macropores based on μ-CT technology. Fuel 200:199–207. doi:10.1016/j.fuel.2017.03.068.
  • Otsu, N. A. 1979. Threshold selection method from gray level histograms. IEEE Transactions on Systems, Man, and Cybernetics: Systems 9:62–66. doi:10.1109/TSMC.1979.4310076.
  • Shi, J., Z. Feng, D. Zhou, L. Hu, and Q. Meng. 2022. Experimental study on coal blockage removal based on pulverized coal blockage. International Journal of Coal Geology 47 (04):1629–36. In Chinese. doi:10.1016/j.petrol.2022.110885.
  • Shi, J., Z. Feng, D. Zhou, X. Li, and Q. Meng. 2023. Analysis of the permeability evolution law of in situ steam pyrolysis of bituminous coal combing with in situ CT technology. Energy 263:126009. doi:10.1016/j.energy.2022.126009.
  • Shi, J., Z. Feng, D. Zhou, Q. Meng, L. Hu, and X. Li. 2022. Experimental study on coal blockage removal based on pulverized coal blockage. Journal of Petroleum Science and Engineering 217:110885. doi:10.1016/j.petrol.2022.110885.
  • Shi, J., Z. Feng, D. Zhou, Y. Shen, and X. Li. 2022. Analysis of fissure structure differences under different pyrolysis methods of bituminous coal combing with micro-CT technology [J/OL]. Journal China Coal Society. In Chinese. doi:10.13225/j.cnki.jccs.2022.1330.
  • Wang, L., D. Yang, Z. Kang, J. Zhao, and Q. Meng. 2022. Experimental study on the effects of steam temperature on the pore-fracture evolution of oil shale exposed to the convection heating. Journal of Analytical and Applied Pyrolysis 164:105533. doi:10.1016/j.jaap.2022.105533.
  • Wang, L., D. Yang, Y. Zhang, W. Li, Z. Kang, and Y. Zhao. 2022. Research on the reaction mechanism and modification distance of oil shale during high-temperature water vapor pyrolysis. Energy 261:125213. doi:10.1016/j.energy.2022.125213.
  • Zhang, K., Y. Li, Y. He, Z. Wang, Q. Li, M. Kuang, L. Ge, and K. Cen. 2018. Volatile gas release characteristics of three typical Chinese coals under various pyrolysis conditions. Journal of the Energy Institute 91 (6):1045–56. doi:10.1016/j.joei.2017.07.004.
  • Zhang, H. R., S. Li, K. E. Kelly, and E. G. Eddings. 2017. Underground in situ coal thermal treatment for synthetic fuels production. Prog Energy Combust Sci 62:1–32. doi:10.1016/j.pecs.2017.05.003.
  • Zhang, C., Y. Zhao, Z. Feng, Q. Meng, and L. Wang. 2022. Evolution of chemical component and physical properties of Datong long-flame coal after superheated water vapor pyrolysis. Combustion Science and Technology. doi:10.1080/00102202.2022.2147793.
  • Zhao, Y., Z. Feng, Z. Feng, D. Yang, and W. Liang. 2015. THM (Thermo-hydro-mechanical) coupled mathematical model of fractured media and numerical simulation of a 3D enhanced geothermal system at 573 K and buried depth 6000–7000 m. Energy 82:193–205. doi:10.1016/j.energy.2015.01.030.
  • Zhao, Y., Z. Feng, Y. Zhao, and Z. Wan. 2017. Experimental investigation on thermal cracking, permeability under HTHP and application for geothermal mining of HDR. Energy 132:305–14. doi:10.1016/j.energy.2017.05.093.
  • Zhao, Y., W. Liang, Z. Feng, Z. Feng, and D. Yang. 2021. Science, technology and engineering of in situ modified mining by fluidization. Journal of China Coal Society 46 (01):25–35. In Chinese. doi:10.13225/j.cnki.jccs.yg20.1826.
  • Zhao, Y., Q. Meng, Z. Feng, Z. Feng, D. Yang, and Y. Zhang. 2017. Evolving pore structures of lignite during pyrolysis observed by computed tomography. Journal of Porous Media 20 (2):143–53. doi:10.1615/JPorMedia.v20.i2.40.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.