101
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Nucleate pool boiling thermal management systems of hydrazine reduced graphene oxide (H-rGO) nanofluids with rough surface

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 6994-7007 | Received 27 Jan 2023, Accepted 18 May 2023, Published online: 31 May 2023

References

  • Ahn, H. S., J. M. Kim, and M. H. Kim. 2013. Experimental study of the effect of a reduced graphene oxide coating on critical heat flux enhancement. International Journal of Heat & Mass Transfer 60:763–71. doi:10.1016/j.ijheatmasstransfer.2013.01.052.
  • Amiri, A., M. Shanbedi, H. Amiri, S. Z. Heris, S. N. Kazi, B. T. Chew, and H. Eshghi. 2014. Pool boiling heat transfer of CNT/water nanofluids. Applied Thermal Engineering 71 (1):450–59. doi:10.1016/j.applthermaleng.2014.06.064.
  • Cieśliński, J. T., and T. Z. Kaczmarczyk. 2015. Pool boiling of water–Al2O3 and water–Cu nanofluids outside porous coated tubes. Heat Transfer Engineering 36 (6):553–63. doi:10.1080/01457632.2014.939046.
  • Cooper, M. G. 1984. Heat flow rates in saturated nucleate pool boiling-a wide-ranging examination using reduced properties. Advances in Heat Transfer 16:157–239.
  • Das, S. K., N. Putra, and W. Roetzel. 2003. Pool boiling of nano-fluids on horizontal narrow tubes. International Journal of Multiphase Flow 29 (8):1237–47. doi:10.1016/S0301-9322(03)00105-8.
  • El-Genk, M. S., and A. F. Ali. 2010. Enhanced nucleate boiling on copper micro-porous surfaces. International Journal of Multiphase Flow 36 (10):780–92. doi:10.1016/j.ijmultiphaseflow.2010.06.003.
  • Ganapathy, H., and V. Sajith. 2013. Semi-analytical model for pool boiling of nanofluids. International Journal of Heat & Mass Transfer 57 (1):32–47. doi:10.1016/j.ijheatmasstransfer.2012.09.056.
  • Gorenflo, D. 1993. Pool boiling. Chapt. Ha. VDI Heat Atlas. VDI-Verlag, Duesseldorf Translation of VDI Waermeatlas. 6th ed.
  • Harish, G., V. Emlin, and V. Sajith. 2011. Effect of surface particle interactions during pool boiling of nanofluids. International Journal of Thermal Sciences 50 (12):2318–27. doi:10.1016/j.ijthermalsci.2011.06.019.
  • Hong, K. T., H. Imadojemu, and R. L. Webb. 1994. Effects of oxidation and surface roughness on contact angle. Experimental Thermal & Fluid Science 8 (4):279–85. doi:10.1016/0894-1777(94)90058-2.
  • Huang, M., H. Borzoei, A. Abdollahi, Z. Li, and A. Karimipour. 2021. Effect of concentration and sedimentation on boiling heat transfer coefficient of GNPs-SiO2/deionized water hybrid Nanofluid: An experimental investigation. International Communications in Heat and Mass Transfer 122:105141. doi:10.1016/j.icheatmasstransfer.2021.105141.
  • Kamatchi, R., S. Venkatachalapathy, and C. Nithya. 2016. Experimental investigation and mechanism of critical heat flux enhancement in pool boiling heat transfer with nanofluids. Heat and Mass Transfer 52(11):2357–66. doi: 10.1007/s00231-015-1749-2.
  • Kandlikar, S. G., and M. E. Steinke. 2001. Contact angles of droplets during spread and recoil after impinging on a heated surface. Chemical Engineering Research & Design 79 (4):491–98. doi:10.1205/026387601750282436.
  • Khan, S. A., and S. G. Al-Ghamdi. 2021. Synthesis of graphene oxide nanofluid based micro-nano scale surfaces for high-performance nucleate boiling thermal management systems. Case Studies in Thermal Engineering 28:101436. doi:10.1016/j.csite.2021.101436.
  • Launay, S., A. G. Fedorov, Y. Joshi, A. Cao, and P. M. Ajayan. 2006. Hybrid micro-nano structured thermal interfaces for pool boiling heat transfer enhancement. Microelectronics Journal 37 (11):1158–64. doi:10.1016/j.mejo.2005.07.016.
  • Liu, Z. H., J. G. Xiong, and R. Bao. 2007. Boiling heat transfer characteristics of nanofluids in a flat heat pipe evaporator with micro-grooved heating surface. International Journal of Multiphase Flow 33 (12):1284–95. doi:10.1016/j.ijmultiphaseflow.2007.06.009.
  • McHale, J. P., and S. V. Garimella. 2010. Bubble nucleation characteristics in pool boiling of a wetting liquid on smooth and rough surfaces. International Journal of Multiphase Flow 36 (4):249–60. doi:10.1016/j.ijmultiphaseflow.2009.12.004.
  • Narayan, G. P., K. B. Anoop, and S. K. Das. 2007. Mechanism of enhancement/deterioration of boiling heat transfer using stable nanoparticle suspensions over vertical tubes. Journal of Applied Physics 102 (7):074317.
  • Park, Y., H. Kim, J. Kim, and H. Kim. 2016. Measurement of liquid–vapor phase distribution on nano-and microstructured boiling surfaces. International Journal of Multiphase Flow 81:67–76. doi:10.1016/j.ijmultiphaseflow.2016.01.007.
  • Park, S. D., S. Won Lee, S. Kang, I. C. Bang, J. H. Kim, H. S. Shin, D. W. Lee, and D. Won Lee. 2010. Effects of nanofluids containing graphene/graphene-oxide nanosheets on critical heat flux. Applied Physics Letters 97 (2):023103. doi:10.1063/1.3459971.
  • Rohsenow, W. M. 1951. A method of correlating heat transfer data for surface boiling of liquids. Cambridge, Mass: MIT Division of Industrial Cooporation.
  • Sang, L., W. Ai, Y. Wu, and C. Ma. 2020. Enhanced specific heat and thermal conductivity of ternary carbonate nanofluids with carbon nanotubes for solar power applications. International Journal of Energy Research 44(1):334–43. doi: 10.1002/er.4923.
  • Sezer, N., S. A. Khan, Y. Bicer, and M. Koc. 2022. Enhanced nucleate boiling heat transfer on bubble-induced assembly of 3D porous interconnected graphene oxide/silver nanowire hybrid network. Case Studies in Thermal Engineering 38:102334. doi: 10.1016/j.csite.2022.102334.
  • Shi, M. H., M. Q. Shuai, Z. Q. Chen, Q. Li, and Y. Xuan. 2007. Study on pool boiling heat transfer of nano-particle suspensions on plate surface. Journal of Enhanced Heat Transfer 14 (3):223–31. doi:10.1615/JEnhHeatTransf.v14.i3.40.
  • Tong, W., A. Bar-Cohen, T. W. Simon, and S. M. You. 1990. Contact angle effects on boiling incipience of highly-wetting liquids. International Journal of Heat & Mass Transfer 33 (1):91–103. doi:10.1016/0017-9310(90)90144-J.
  • Wen, D., M. Corr, X. Hu, and G. Lin. 2011. Boiling heat transfer of nanofluids: The effect of heating surface modification. International Journal of Thermal Sciences 50 (4):480–85. doi:10.1016/j.ijthermalsci.2010.10.017.
  • Wen, D., and Y. Ding. 2005. Experimental investigation into the pool boiling heat transfer of aqueous based γ-alumina nanofluids. Journal of Nanoparticle Research 7(2):265–74. doi: 10.1007/s11051-005-3478-9.
  • William, S., J. R. Hummers, and R. E. Offeman. 1958. Preparation of graphitic oxide. Journal of the American Chemical Society 80 (6):1339. doi:10.1021/ja01539a017.
  • Zhang, Y., and W. Chen. 2021. Heat transfer study on flowing liquid film of SiO2‐water nanofluid with surfactant confined by metallic foam. International Journal of Energy Research 45 (4):6015–31. doi:10.1002/er.6223.
  • Zhang, H., S. Qing, Y. Zhai, X. Zhang, and A. Zhang. 2021. The changes induced by pH in TiO2/water nanofluids: Stability, thermophysical properties and thermal performance. Powder Technology 377:748–59. doi:10.1016/j.powtec.2020.09.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.