2,444
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Technoeconomic evaluation of offshore green ammonia production using tidal and wind energy: a case study

ORCID Icon, ORCID Icon & ORCID Icon
Pages 7222-7244 | Received 31 Jan 2023, Accepted 26 May 2023, Published online: 05 Jun 2023

References

  • Abolude, A., and W. Zhou. 2019. A comparative computational fluid dynamic study on the effects of terrain type on hub-height wind aerodynamic properties. Energies 12 (1):83. doi:10.3390/en12010083.
  • Alex, A., R. Petrone, B. Tala-Ighil, D. Bozalakov, L. Vandevelde, and H. Gualous. 2022. Optimal techno-enviro-economic analysis of a hybrid grid connected tidal-wind-hydrogen energy system. International Journal of Hydrogen Energy 47 (86):36448–64. doi:10.1016/j.ijhydene.2022.08.214.
  • Almoghayer, M. A. and D. K. Woolf. 2019. An assessment of efficient tidal stream energy extraction using 3D numerical modelling techniques. In: Proceedings of the 13th EWTEC, 1-6 September, Naples, Italy, 1–10.
  • Almoghayer, M. A., D. K. Woolf, S. Kerr, and G. Davies. 2022. Integration of tidal energy into an island energy system - a case study of Orkney islands. Energy 242:122547. doi:10.1016/j.energy.2021.122547.
  • Bak, C. 2013. The DTU 10-MW reference wind turbine. In: Danish wind power research 2013, DTU Risø Campus, Denmark.
  • Baldi, F., A. Coraddu, M. Kalikatzarakis, D. Jeleňová, M. Collu, J. Race, and F. Maréchal. 2022. Optimisation-based system designs for deep offshore wind farms including power to gas technologies. Applied Energy 310:118540. doi:10.1016/j.apenergy.2022.118540.
  • Beerbühl, S. S., M. Fröhling, and F. Schultmann. 2015. Combined scheduling and capacity planning of electricity-based ammonia production to integrate renewable energies. European Journal of Operational Research 241 (3):851–62. doi:10.1016/j.ejor.2014.08.039.
  • Black & Veatch. 2020. “Lessons learnt from MeyGen Phase 1A final summary report,” Surrey, UK.
  • Blanco, H., W. Nijs, J. Ruf, and A. Faaij. 2018. Potential of power-to-methane in the EU energy transition to a low carbon system using cost optimization. Applied Energy 232:323–40. doi:10.1016/j.apenergy.2018.08.027.
  • Bryden, I. G., T. Grinsted, and G. T. Melville. 2004. Assessing the potential of a simple tidal channel to deliver useful energy. Applied Ocean Research 26 (5):198–204.
  • Cesaro, Z., M. Ives, R. Nayak-Luke, M. Mason, and R. Bañares-Alcántara. 2021. Ammonia to power: Forecasting the levelized cost of electricity from green ammonia in large-scale power plants. Applied Energy 282:116009. doi:10.1016/j.apenergy.2020.116009.
  • Coles, D., A. Angeloudis, D. Greaves, G. Hastie, M. Lewis, L. Mackie, J. McNaughton, J. Miles, S. Neill, M. Piggott, et al. 2021. A review of the UK and British channel Islands practical tidal stream energy resource. Proceedings of the Royal Society A. 477(2255):20210469. doi:10.1098/rspa.2021.0469.
  • Crivellari, A., and V. Cozzani. 2020. Offshore renewable energy exploitation strategies in remote areas by power-to-gas and power-to- liquid conversion. International Journal of Hydrogen Energy 45 (4):2936–53. doi:10.1016/j.ijhydene.2019.11.215.
  • Djama Dirieh, N., J. Thiébot, S. Guillou, and N. Guillou. 2022. Blockage corrections for tidal turbines—application to an array of turbines in the Alderney race. Energies 15 (10):3475. doi:10.3390/en15103475.
  • Encarnacion, J. I., C. Johnstone, and S. Ordonez-Sanchez. 2019. Design of a horizontal axis tidal turbine for less energetic current velocity profiles. Journal of Marine Science and Engineering 7 (7):197. doi:10.3390/jmse7070197.
  • Fasihi, M., R. Weiss, J. Savolainen, and C. Breyer. 2021. Global potential of green ammonia based on hybrid PV-wind power plants. Applied Energy 294:116170.
  • Garcia‐Sanz, M. 2020. A metric space with LCOE isolines for research guidance in wind and hydrokinetic energy systems. Wind Energy 23 (2):291–311.
  • Goss, Z., D. Coles, and M. Piggott. 2021. Economic analysis of tidal stream turbine arrays: A review. 1–29.
  • Goward Brown, A. J., S. P. Neill, and M. J. Lewis. 2017. Tidal energy extraction in three-dimensional ocean models. Renew Energy 114:244–57. doi:10.1016/j.renene.2017.04.032.
  • Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., et al. 2022. ERA5 hourly data on single levels from 1979 to present,” Copernicus climate change service (C3S) Climate data store (CDS). Online. Accessed: 10-Mar-2022. doi:10.24381/cds.adbb2d47.
  • Ikäheimo, J., J. Kiviluoma, R. Weiss, and H. Holttinen. 2018. Power-to-ammonia in future North European 100 % renewable power and heat system. International Journal of Hydrogen Energy 43 (36):17295–308. doi:10.1016/j.ijhydene.2018.06.121.
  • IRENA and AEA. 2022. “Innovation outlook: Renewable ammonia,” International renewable energy agency, Abu Dhabi. Brooklyn: Ammonia Energy Association.
  • IRENA (International Renewable Energy Agency). Global renewables outlook: energy transformation 2050. 2020. Abu Dhabi, United Arab Emirates.
  • IRENA (International Renewable Energy Agency), “Renewable power generation costs in 2021,” Abu Dhabi, United Arab Emirates, 2022.
  • Kaiser, M. J., B. Snyder, and A. G. Pulsipher. 2013. Offshore Drilling Industry and Rig Construction Market in the Gulf of Mexico. BOEM 2013-0112. New Orleans, LA: U.S. Dept. of the Interior, Bureau of Ocean Energy Management, Gulf of Mexico OCS Region.
  • Lewis, M., R. O’Hara Murray, S. Fredriksson, J. Maskell, A. de Fockert, S. P. Neill, and P. E. Robins. 2021. A standardised tidal-stream power curve, optimised for the global resource. Renewable Energy 170:1308–23. doi:10.1016/j.renene.2021.02.032.
  • Liu, Y., D. Chen, Q. Yi, and S. Li. 2017. Wind profiles and wave spectra for potential wind farms in South China Sea. Part I: Wind speed profile model. Energies 10 (1):125. doi:10.3390/en10010125.
  • Liu, M., W. Li, R. Billinton, C. Wang, and J. Yu. 2015. Probabilistic modeling of tidal power generation. In: 2015 IEEE Power & Energy Society General Meeting, Denver, Colorado. 3–7.
  • Martinez, A., and G. Iglesias. 2022. Mapping of the levelised cost of energy for floating offshore wind in the European Atlantic. Renewable and Sustainable Energy Reviews 154:111889. doi:10.1016/j.rser.2021.111889.
  • Mason-Jones, A., O'Doherty, D.M., Morris, C.E., O'Doherty, T., Byrne, C.B., Prickett, P.W., Grosvenor, R.I., Owen, I., Tedds, S., and Poole, R.J. 2012. Non-dimensional scaling of tidal stream turbines. Energy 44 (1):820–29. doi:10.1016/j.energy.2012.05.010.
  • McKenna, R., M. D’Andrea, and M. G. González. 2021. Analysing long-term opportunities for offshore energy system integration in the Danish North Sea. Advances in Applied Energy 4:100067. doi:10.1016/j.adapen.2021.100067.
  • “MEYGEN,” SIMEC Atlantis Energy, 2021. [Accessed 2021 Nov 14]. [Online]. Available: https://simecatlantis.com/projects/meygen/
  • Morgan, E. R., “Techno-economic feasibility study of ammonia plants powered by offshore wind ( Ph.D. Thesis), University of Massachusetts Amherst, 2013.
  • Myers, L. E., and A. S. Bahaj. 2012. An experimental investigation simulating flow effects in first generation marine current energy converter arrays. Renew Energy 37 (1):28–36. doi:10.1016/j.renene.2011.03.043.
  • Nayak-Luke, R. M., and R. Bañares-Alcántara. 2020. Techno-economic viability of islanded green ammonia as a carbon-free energy vector and as a substitute for conventional production. Energy & Environmental Science 13 (9):2957–66.
  • Neill, S. P., Vögler, A., Goward-Brown, A.J., Baston, S., Lewis, M.J., Gillibrand, P.A., Waldman, S., and Woolf, D.K. 2017. The wave and tidal resource of Scotland. Renew Energy 114:3–17.
  • Nieradzinska, K., C. MacIver, S. Gill, G. A. Agnew, O. Anaya-Lara, and K. R. W. Bell. 2016. Optioneering analysis for connecting Dogger Bank offshore wind farms to the GB electricity network. Renew Energy 91:120–29. doi:10.1016/j.renene.2016.01.043.
  • O’Hara Murray, R., and L. Campbell. 2021. Pentland Firth and Orkney Waters Climatology 1.02. Marine Scotland Accessed: 6-Jan-2022 Online Available. doi:10.7489/12041-1.
  • O’Hara Murray, R., and A. Gallego. 2017. A modelling study of the tidal stream resource of the Pentland Firth, Scotland. Renew Energy 102 (B):326–40. doi:10.1016/j.renene.2016.10.053.
  • The Royal Society. 2020. Ammonia: Zero-carbon fertiliser, fuel and energy store. DES5711. London, UK: The Royal Society. https://royalsociety.org/green-ammonia. Policy briefing.
  • Ruiz, P., W. Nijs, D. Tarvydas, A. Sgobbi, A. Zucker, R. Pilli, R. Jonsson, A. Camia, C. Thiel, C. Hoyer-Klick, et al. 2019. ENSPRESO - an open, EU-28 wide, transparent and coherent database of wind, solar and biomass energy potentials. Energy Strategy Reviews 26:100379. doi:10.1016/j.esr.2019.100379.
  • Salmon, N., and R. Bañares-Alcántara. 2021a. Green ammonia as a spatial energy vector: A review. Sustainable Energy & Fuels 5 (11):2814–39. doi:10.1039/D1SE00345C.
  • Salmon, N., and R. Bañares-Alcántara. 2021b. Impact of grid connectivity on cost and location of green ammonia production: Australia as a case study. Energy & Environmental Science 14 (12):6655–71.
  • Salmon, N., and R. Bañares-Alcántara. 2022. A global, spatially granular techno-economic analysis of offshore green ammonia production. Journal of Cleaner Production 367:133045. doi:10.1016/j.jclepro.2022.133045.
  • Salmon, N., R. Bañares-Alcántara, and R. Nayak-Luke. 2021. Optimization of green ammonia distribution systems for intercontinental energy transport. iScience 24 (8):102903. doi:10.1016/j.isci.2021.102903.
  • Stallard, T., R. Collings, T. Feng, and J. Whelan. 2013. Interactions between tidal turbine wakes: Experimental study of a group of three-bladed rotors. Philosophical Transactions of the Royal Society A 371 (1985):20120159.
  • Stansby, P. K., and P. Ouro. 2022. Modelling marine turbine arrays in tidal flows. Journal of Hydraulic Research 60 (2):187–204. doi:10.1080/00221686.2021.2022032.
  • Stansby, P., and T. Stallard. 2016. Fast optimisation of tidal stream turbine positions for power generation in small arrays with low blockage based on superposition of self-similar far-wake velocity deficit profiles. Renew Energy 92:366–75. doi:10.1016/j.renene.2016.02.019.
  • Thiébot, J., N. Guillou, S. Guillou, A. Good, and M. Lewis. 2020. Wake field study of tidal turbines under realistic flow conditions. Renew Energy 151:1196–208. doi:10.1016/j.renene.2019.11.129.
  • Thommessen, C., M. Otto, F. Nigbur, J. Roes, and A. Heinzel. 2021. Techno-economic system analysis of an offshore energy hub with an outlook on electrofuel applications. Smart Energy 3:100027. doi:10.1016/j.segy.2021.100027.
  • “TIDAL STREAM,” SIMEC Atlantis Energy, 2022. [Accessed 2022 Jun 15]. [Online]. Available: https://simecatlantis.com/tidal-stream/
  • Ulazia, A., G. Ibarra-Berastegi, J. Sáenz, S. Carreno-Madinabeitia, and S. J. González-Rojí. 2019. Seasonal correction of offshore wind energy potential due to air density: Case of the Iberian Peninsula. Sustainability 11 (13):3648.
  • Valera-Medina, A., “Sustainable energy for wales: Tidal and wind with ammonia storage,” Ammonia Energy Association, 2018. [Accessed 2023 Apr 1]. [Online]. Available: https://www.ammoniaenergy.org/articles/sustainable-energy-for-wales-tidal-and-wind-with-ammonia-storage/
  • Vennell, R., S. W. Funke, S. Draper, C. Stevens, and T. Divett. 2015. Designing large arrays of tidal turbines: A synthesis and review. Renewable and Sustainable Energy Reviews 41:454–72. doi:10.1016/j.rser.2014.08.022.
  • Wang, H., P. Daoutidis, and Q. Zhang. 2021. Harnessing the wind power of the ocean with green offshore ammonia. ACS Sustainable Chemistry & Engineering 9 (43):14605–17. doi:10.1021/acssuschemeng.1c06030.
  • Wang, S., A. R. Nejad, and T. Moan. 2020. On design, modelling, and analysis of a 10-MW medium-speed drivetrain for offshore wind turbines. Wind Energy 23 (4):1099–117.
  • Warwick-Brown, D., H. Berge-Karevoll, M. Al Abdullatif, and A. Valera-Medina. 2020. Assessing the techno-economic feasibility of a wind-tidal lagoon hybrid system for green ammonia storage in wales, UK. In: Congreso Internacional de Desarrollo Sustentable y Energías Renovables (CIDSER 2020), 4–6 November, Mexico City. 4–6.
  • Weimann, L., P. Gabrielli, A. Boldrini, G. J. Kramer, and M. Gazzani. 2021. Optimal hydrogen production in a wind-dominated zero-emission energy system. Advances in Applied Energy 3:100032. doi:10.1016/j.adapen.2021.100032.
  • Yang, Z., T. Wang, and A. E. Copping. 2013. Modeling tidal stream energy extraction and its effects on transport processes in a tidal channel and bay system using a three-dimensional coastal ocean model. Renew Energy 50:605–13. doi:10.1016/j.renene.2012.07.024.
  • Zazzini, S. 2019. Turbulence changes due to a tidal stream turbine operation in the Pentland Firth (Scotland, UK). In: 2019 IMEKO TC-19 International Workshop on Metrology for the Sea Genova, Italy. pp. 309–14.
  • Zhong, L., E. Yao, H. Zou, and G. Xi. 2022. Thermodynamic and economic analysis of a directly solar-driven power-to-methane system by detailed distributed parameter method. Applied Energy 312:118670. doi:10.1016/j.apenergy.2022.118670.
  • Zilic de Arcos, F., G. Tampier, and C. R. Vogel. 2020. Numerical analysis of blockage correction methods for tidal turbines. Journal of Ocean Engineering and Marine Energy 6 (2):183–97.