125
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Study on the Re-ignition Characteristics of High-Temperature Oxidization & Water Immersion Long-Flame Coal at Different Heating Rates

ORCID Icon, , , &
Pages 7317-7328 | Received 13 Jan 2023, Accepted 31 Mar 2023, Published online: 05 Jun 2023

References

  • Bu, Y., H. Niu, H. Wang, T. Qiu, H. Chen, and D. Xue. 2023. Characteristics of lean oxygen combustion and dynamic microreaction process of water-soaked coal. Fuel 332:126010. doi:10.1016/j.fuel.2022.126010.
  • Deng, J., J. Zhao, Y. Zhang, A. Huang, X. Liu, X. Zhai, and C. Wang. 2016. Thermal analysis of spontaneous combustion behavior of partially oxidized coal. Process Safety and Environmental Protection 104:218–24. doi:10.1016/j.psep.2016.09.007.
  • Dias, C., M. Oliveira, J. Hower, S. Taffarel, and R. K. L. Silva. 2014. Nanominerals and ultrafine particles from coal fires from Santa Catarina, South Brazil. International Journal of Coal Geology 122:50–60. doi:10.1016/j.coal.2013.12.011.
  • Jankovic, B., N. Manic, D. Stojiljkovic, and V. Jovanovic. 2020. The assessment of spontaneous ignition potential of coals using TGA–DTG technique. Combustion & Flame 211:32–43. doi:10.1016/j.combustflame.2019.09.020.
  • Kandasamy, J., V. Mustafa, and G. Iskender. 2017. Thermogravimetric and mass spectrometric (TG-MS) analysis and kinetics of coal-biomass blends. Renewable Energy 101:293–300. doi:10.1016/j.renene.2016.08.072.
  • Li, S., G. Ni, and H. Wang. 2020. Effects of acid solution of different components on the pore structure and mechanical properties of coal. Advanced Powder Technology: The International Journal of the Society of Powder Technology, Japan 31 (4):1736–47. doi:10.1016/j.apt.2020.02.009.
  • Luo, Z., B. Qin, Q. Shi, H. Hu, P. Sheng, and S. Tian. 2022. Compound effects of water immersion and pyritic sulfur on the microstructure and spontaneous combustion of non-caking coal. Fuel 308:121999. doi:10.1016/j.fuel.2021.121999.
  • Mustafa, V., and Y. Betul. 2019. Gasification profiles of Thrace region coal under CO2, N2/CO2, and N2/DRY air environments. Journal of Petroleum Science & Engineering 175:237–45. doi:10.1016/j.petrol.2018.12.050.
  • Naktiyok, J. 2018. Determination of the self-heating temperature of coal by means of TGA analysis. Energy & Fuel 32 (2):2299–305. doi:10.1021/acs.energyfuels.7b02296.
  • Song, S., B. Qin, H. Xin, X. Qin, and K. Chen. 2018. Exploring effect of water immersion on the structure and low-temperature oxidation of coal: A case study of Shendong long flame coal, China. Fuel 234:732–37. doi:10.1016/j.fuel.2018.07.074.
  • Sun, L., Y. Zhang, Y. Wang, and Q. Liu. 2019. Study on the reoxidation characteristics of soaked and air-dried coal. Journal of Energy Resources Technology 141 (2):0222032. doi:10.1115/1.4041407.
  • Xiao, Y., Q. Li, J. Deng, C. Shu, and W. Wang. 2017. Experimental study on the corresponding relationship between the index gases and critical temperature for coal spontaneous combustion. Journal of Thermal Analysis and Calorimetry 127 (1):1009–17. doi:10.1007/s10973-016-5770-6.
  • Xiao, Y., L. Yin, L. Ma, and Y. Zhou. 2018. Experimental study on coal thermo-physical parameters under the different peroxidation temperature. Journal of Xi’an University of Science and Technology 38 (3):383–88. doi:10.13800/j.cnki.xakjdxxb.2018.0306.
  • Yang, Y., Z. Li, L. Si, F. Gu, Y. Zhou, Q. Qi, and X. Sun. 2016. Study governing the impact of long-term water immersion on coal spontaneous ignition. Arabian Journal for Science & Engineering 42 (4):1359–69. doi:10.1007/s13369-016-2245-9.
  • Zhai, X., H. Ge, T. Wang, C. Shu, and J. Li. 2020. Effect of water immersion on active functional groups and characteristic temperatures of bituminous coal. Energy 205 (UNSP):11807613. doi:10.1016/j.energy.2020.118076.
  • Zhang, Y., Y. Li, Y. Huang, S. Li, and W. Wang. 2018. Characteristics of mass, heat and gaseous products during coal spontaneous combustion using TG/DSC–FTIR technology. Journal of Thermal Analysis and Calorimetry 131 (3):2963–74. doi:10.1007/s10973-017-6738-x.
  • Zhong, X., L. Kan, H. Xin, B. Qin, and G. Dou. 2019. Thermal effects and active group differentiation of low-rank coal during low-temperature oxidation under vacuum drying after water immersion. Fuel 236:1204–12. doi:10.1016/j.fuel.2018.09.059.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.