153
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Rheology Properties of Cyclopentane Hydrate Slurry in the Presence of Wax Crystals

, ORCID Icon, , ORCID Icon, &
Pages 7629-7647 | Received 06 Feb 2023, Accepted 08 Jun 2023, Published online: 13 Jun 2023

References

  • Ahuja, A., G. Zylyftari, and J. F. Morris. 2014. Calorimetric and rheological studies on cyclopentane hydrate-forming water-in-kerosene emulsions. Journal of Chemical & Engineering Data 60 (2):362–68. doi:10.1021/je500609q.
  • Ahuja, A., G. Zylyftari, and J. F. Morris. 2015. Yield stress measurements of cyclopentane hydrate slurry. Journal of Non-Newtonian Fluid Mechanics 220:116–25. doi:10.1016/j.jnnfm.2014.11.007.
  • Bai, J., Z. Pan, L. Shang, Z. Lv, J. Zhai, Y. Qu, and H. Yu. 2023. Effects of activated carbon particle size on the formation of hydrate in fully/partially saturated liquid phase system. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 45 (2):4839–52. doi:10.1080/15567036.2023.2205363.
  • Brown, E. P., and C. A. Koh. 2016. Micromechanical measurements of the effect of surfactants on cyclopentane hydrate shell properties. Physical Chemistry Chemical Physics 18 (1):594–600. doi:10.1039/c5cp06071k.
  • Charin, R. M., and A. K. Sum. 2017. Steady-state and transient studies of gas hydrates formation in non-emulsifying oil systems. Energy & Fuels 31 (3):2548–56. doi:10.1021/acs.energyfuels.6b02868.
  • Chen, Y., B. Shi, S. Fu, Q. Li, H. Yao, Y. Liu, X. Lv, J. Wang, Q. Liao, X. Duan, et al. 2021. Kinetic and rheological investigation of cyclopentane hydrate formation in waxy water-in-oil emulsions. Fuel 287:119568. doi:10.1016/j.fuel.2020.119568.
  • Chen, Y. C., B. H. Shi, Y. Liu, Q. L. Ma, S. F. Song, L. Ding, X. F. Lv, H. H. Wu, W. Wang, H. Y. Yao, et al. 2019. In situ viscosity measurements of a cyclopentane hydrate slurry in waxy water-in-oil emulsions. Energy & Fuels 33 (4):2915–25. doi:10.1021/acs.energyfuels.8b04268.
  • De Lima Silva, P. H., M. F. Naccache, P. R. De Souza Mendes, A. Teixeira, and L. S. Valim. 2020. Rheology of THF hydrate slurries at high pressure. Oil and Gas Science and Technology 75 (1):16. doi:10.2516/ogst/2020007.
  • Ding, L., B. H. Shi, X. F. Lv, Y. Liu, H. H. Wu, W. Wang, and J. Gong. 2016. Investigation of natural gas hydrate slurry flow properties and flow patterns using a high pressure flow loop. Chemical Engineering Science 146:199–206. doi:10.1016/j.ces.2016.02.040.
  • Ding, L., B. H. Shi, J. Q. Wang, Y. Liu, X. F. Lv, H. H. Wu, W. Wang, X. Lou, and J. Gong. 2017. Hydrate deposition on cold pipe walls in water-in-oil (W/O) emulsion systems. Energy & Fuels 31 (9):8865–76. doi:10.1021/acs.energyfuels.7b00559.
  • Guerra, A., A. McElligott, C. Yang Du, M. Marić, A. D. Rey, and P. Servio. 2022. Dynamic viscosity of methane and carbon dioxide hydrate systems from pure water at high-pressure driving forces. Chemical Engineering Science 252:117282. doi:10.1016/j.ces.2021.117282.
  • Guo, L., J. Zhang, G. Sun, and Y. Bao. 2015. Thixotropy and its estimation of water-in-waxy crude emulsion gels. Journal of Petroleum Science & Engineering 131:86–95. doi:10.1016/j.petrol.2015.04.032.
  • Jing, J. Q., S. Wang, F. Xiao, M. Zhang, L. Han, and X. H. Gou. 2019. Analysis of influence factors of start-up yield stress for heavy oil emulsions. Petroleum Science and Technology 37 (11):1314–22. doi:10.1080/10916466.2019.1581808.
  • Jing, J. Q., L. Q. Zhuang, R. Karimov, J. Sun, and X. T. Zhang. 2023. Investigation of natural gas hydrate formation and slurry viscosity in non-emulsifying oil systems. Chemical Engineering Research & Design 190:687–703. doi:10.1016/j.cherd.2023.01.017.
  • Karanjkar, P. U., A. Ahuja, G. Zylyftari, J. W. Lee, and J. F. Morris. 2016. Rheology of cyclopentane hydrate slurry in a model oil-continuous emulsion. Rheologica Acta 55 (3):235–43. doi:10.1007/s00397-016-0911-1.
  • Liao, Q., B. Shi, S. Song, X. Duan, F. Yang, and J. Gong. 2022. Molecular insights into methane hydrate growth in the presence of wax molecules. Fuel 324. doi:10.1016/j.fuel.2022.124743.
  • Liu, Y., X. Lv, B. Shi, S. Zhou, Y. Lei, P. Yu, Y. Chen, S. Song, Q. Ma, J. Gong, et al. 2021. Rheological study of low wax content hydrate slurries considering phase interactions. Journal of Natural Gas Science & Engineering 94. doi:10.1016/j.jngse.2021.104106.
  • Liu, J., J. Wang, T. Dong, and D. Liang. 2022. Effects of wax on CH4 hydrate formation and agglomeration in oil–water emulsions. Fuel 322. doi:10.1016/j.fuel.2022.124128.
  • Lv, X., B. Bai, Y. Zhao, Y. Liu, Q. Ma, C. Wang, S. Zhou, S. Song, and B. Shi. 2022. Study on rheological properties of natural gas hydrate slurry. Chemical Engineering Research & Design 188:779–89. doi:10.1016/j.cherd.2022.10.024.
  • Mahabadian, M. A., A. Chapoy, R. Burgass, and B. Tohidi. 2016. Mutual effects of paraffin waxes and clathrate hydrates: A multiphase integrated thermodynamic model and experimental measurements. Fluid Phase Equilibria 427:438–59. doi:10.1016/j.fluid.2016.08.006.
  • Majid, A. A. A., B. Tanner, and C. A. Koh. 2019. Cyclopentane hydrate slurry viscosity measurements coupled with visualisation. Molecular Physics 117 (23–24):3860–70. doi:10.1080/00268976.2019.1670877.
  • Ma, Q., W. Wang, Y. Liu, J. Yang, B. Shi, and J. Gong. 2017. Wax adsorption at paraffin oil–water interface stabilized by Span80. Colloids and Surfaces A, Physicochemical and Engineering Aspects 518:73–79. doi:10.1016/j.colsurfa.2017.01.023.
  • Mech, D., and J. S. Sangwai. 2018. Investigations on the formation kinetics of semiclathrate hydrate of methane in an aqueous solution of tetra-n-butyl ammonium bromide and sodium dodecyl sulfate in porous media. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 40 (20):2415–22. doi:10.1080/15567036.2018.1496203.
  • Mohammadi, A., and M. Manteghian. 2014. The induction time of hydrate formation from a carbon dioxide-methane gas mixture. Petroleum Science and Technology 32 (24):3029–35. doi:10.1080/10916466.2011.615367.
  • Naeiji, P., M. Pan, M. Luzi-Helbing, S. Alavi, and J. M. Schicks. 2023. Experimental and simulation study for the dissociation behavior of gas hydrates – part I: CH4 hydrates. Energy & Fuels 37 (6):4484–96. doi:10.1021/acs.energyfuels.2c03984.
  • Pirzadeh, P., and P. G. Kusalik. 2011. On understanding stacking fault formation in ice. Journal of the American Chemical Society 133 (4):704–07. doi:10.1021/ja109273m.
  • Pirzadeh, P., and P. G. Kusalik. 2013. Molecular insights into clathrate hydrate nucleation at an ice-solution interface. Journal of the American Chemical Society 135 (19):7278–87. doi:10.1021/ja400521e.
  • Qin, Y., Z. M. Aman, P. F. Pickering, M. L. Johns, and E. F. May. 2017. High pressure rheological measurements of gas hydrate-in-oil slurries. Journal of Non-Newtonian Fluid Mechanics 248:40–49. doi:10.1016/j.jnnfm.2017.08.006.
  • Raman, Y. A. K., S. Koteeswaran, D. Venkataramani, P. Clark, S. Bhagwat, and C. P. Aichele. 2016. A comparison of the rheological behavior of hydrate forming emulsions stabilized using either solid particles or a surfactant. Fuel 179:141–49. doi:10.1016/j.fuel.2016.03.049.
  • Sahu, C., S. Kumar Prasad, R. Kumar, and J. S. Sangwai. 2023. High-pressure rheological signatures of CO2 hydrate slurries formed from gaseous and liquid CO2 relevant for refrigeration, pipeline transportation, carbon capture, and geological sequestration. Separation and Purification Technology 309:123087. doi:10.1016/j.seppur.2022.123087.
  • Said, S., B. Mohamed, and H. Jean-Michel. 2019. Investigation of the effects of Al nanoparticles on CO2 separation from natural gas using gas hydrates. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 42 (19):2333–45. doi:10.1080/15567036.2019.1651426.
  • Salmin, D. C., D. Estanga, and C. A. Koh. 2022. Review of gas hydrate anti-agglomerant screening techniques. Fuel 319:122862. doi:10.1016/j.fuel.2021.122862.
  • Schmitt, M., S. Limage, R. Denoyel, and M. Antoni. 2017. Effect of SPAN80 on the structure of emulsified aqueous suspensions. Colloids and Surfaces A, Physicochemical and Engineering Aspects 521:121–32. doi:10.1016/j.colsurfa.2016.11.027.
  • Sefidroodi, H., E. Abrahamsen, and M. A. Kelland. 2013. Investigation into the strength and source of the memory effect for cyclopentane hydrate. Chemical Engineering Science 87:133–40. doi:10.1016/j.ces.2012.10.018.
  • Song, X. F., F. Xin, H. C. Yan, X. G. Li, and H. R. Jia. 2015. Intensification and kinetics of methane hydrate formation under heat removal by phase change of n-tetradecane. AIChE Journal 61 (10):3441–50. doi:10.1002/aic.14867.
  • Sun, G., and J. Zhang. 2015. Structural breakdown and recovery of waxy crude oil emulsion gels. Rheologica Acta 54 (9–10):817–29. doi:10.1007/s00397-015-0873-8.
  • Tong, S., P. Li, F. Lv, Z. Wang, W. Fu, J. Zhang, L. Chen, and X. Wang. 2023. Promotion and inhibition effects of wax on methane hydrate formation and dissociation in water-in-oil emulsions. Fuel 337. doi:10.1016/j.fuel.2022.127211.
  • Webb, E. B., C. A. Koh, and M. W. Liberatore. 2013. Rheological properties of methane hydrate slurries formed from AOT + water + oil microemulsions. Langmuir 29 (35):10997–1004. doi:10.1021/la4022432.
  • Webb, E. B., C. A. Koh, and M. W. Liberatore. 2014. High pressure rheology of hydrate slurries formed from water-in-mineral oil emulsions. Industrial & Engineering Chemistry Research 53 (17):6998–7007. doi:10.1021/ie5008954.
  • Webb, E. B., P. J. Rensing, C. A. Koh, E. D. Sloan, A. K. Sum, and M. W. Liberatore. 2012. High-pressure rheology of hydrate slurries formed from water-in-oil emulsions. Energy & Fuels 26 (6):3504–09. doi:10.1021/ef300163y.
  • Zhao, H., M. Sun, and A. Firoozabadi. 2016. Anti-agglomeration of natural gas hydrates in liquid condensate and crude oil at constant pressure conditions. Fuel 180:187–93. doi:10.1016/j.fuel.2016.03.029.
  • Zheng, H. M., Q. Y. Huang, W. Wang, Z. Long, and P. G. Kusalik. 2017. Induction time of hydrate formation in water-in-oil emulsions. Industrial & Engineering Chemistry Research 56 (29):8330–39. doi:10.1021/acs.iecr.7b01332.
  • Zylyftari, G., A. Ahuja, and J. F. Morris. 2015. Modeling oilfield emulsions: comparison of cyclopentane hydrate and ice. Energy & Fuels 29 (10):6286–95. doi:10.1021/acs.energyfuels.5b01431.
  • Zylyftari, G., J. W. Lee, and J. F. Morris. 2013. Salt effects on thermodynamic and rheological properties of hydrate forming emulsions. Chemical Engineering Science 95:148–60. doi:10.1016/j.ces.2013.02.056.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.