81
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Mechanistic insights into co-pyrolysis of waste tires and waste lubricating oil: Kinetics and thermal behavior study

ORCID Icon, , , &
Pages 8568-8583 | Received 30 Nov 2022, Accepted 12 May 2023, Published online: 27 Jun 2023

References

  • Alam, M., A. Bhavanam, A. Jana, J. Viroja, and N. R. Peela. 2020. Co-pyrolysis of bamboo sawdust and plastic: Synergistic effects and kinetics. Renewable Energy 149:1133–45. doi:10.1016/j.renene.2019.10.103.
  • Asian, I., P. Parthasarathy, J. L. Goldfarb, and S. Ceylan. 2017. Pyrolysis reaction models of waste tires: Application of Master-Plots method for energy conversion via devolatilization. Waste Management 68:405–11. 2017.06.6. wasman. doi:10.1016/j.wasman.2017.06.006.
  • Chen, X., L. Liu, Zhang, L. Zhang, Y. Zhao, and P. Qiu. 2019. Gasification reactivity of co-pyrolysis char from coal blended with corn stalks. Bioresource Technology 279:243–51. Yan. doi:10.1016/j.biortech.2019.01.108.
  • Danon, B., and J. Görgens. 2015. Determining rubber composition of waste tyres using devolatilisation kinetics. Thermochimica acta 621:56–60. doi:10.1016/j.tca.2015.10.008.
  • El-Sayed, S. A., and M. E. Mostafa. 2014. Pyrolysis characteristics and kinetic parameters determination of biomass fuel powders by differential thermal gravimetric analysis (TGA/DTG). Energy Conversion & Management 85 (sep):165–72. doi:10.1016/j.enconman.2014.05.068.
  • Fernandez, A., C. Palacios, M. Echegaray, G. Mazza, and R. Rodriguez. 2017. Pyrolysis and combustion of regional agro-industrial wastes: Thermal behavior and kinetic parameters comparison. Combustion Science and Technology 190 (1):114–35. doi:10.1080/00102202.2017.1377701.
  • Fernandez, A., A. Saffe, G. Mazza, and R. Rodriguez. 2016. Kinetic analysis of regional agro-industrial waste combustion. Biofuels 8 (1):71–80. doi:10.1080/17597269.2016.1200865.
  • Fernandez, A., P. Sette, M. Echegaray, J. Soria, D. Salvatori, G. Mazza, and R. Rodriguez. 2022. Clean recovery of phenolic compounds, pyro-gasification thermokinetics, and bioenergy potential of spent agro-industrial bio-wastes. Biomass Conversion and Biorefinery. doi:10.1007/s13399-021-02197-z.
  • Gartzen, L., A. Jon, Amutio, M. Maider, B. Hooshdaran, M. Cortazar, M. Haghshenasfard, S. H. Hosseini, and M. Olazar. 2019. Kinetic modeling and experimental validation of biomass fast pyrolysis in a conical spouted bed reactor. Chemical Engineering Journal 373:677–86. doi:10.1016/j.cej.2019.05.072.
  • Huang, S., and J. Qin. 2022. Co-pyrolysis of different torrefied Chinese herb residues and low-density polyethylene: Kinetic and products distribution. Science of the Total Environment 802:149752–. doi:10.1016/j.scitotenv.2021.149752.
  • Islam, M. R., M. Joardder, M. A. Kader, and M. Sarker “Valorization of solid tire wastes available in Bangladesh by thermal treatment.” 2nd International Conference On Solid Waste Management in Developing Countries. 2011 doi:10.1016/j.wasman.2008.04.009.
  • Jonusas, A., and L. Miknius. 2015. Influence of the process conditions on yield, composition, and properties of the products derived from the thermolysis of scrap tire and used engine oil blends. Energy & Fuels 29 (11):6978–87. 29.NOV.-DEC. doi:10.1021/acs.energyfuels.5b01540.
  • Kim, S. S., J. Kim, J. K. Jeon, Y. K. Park, and C. J. Park. 2013. Non-isothermal pyrolysis of the mixtures of waste automobile lubricating oil and polystyrene in a stirred batch reactor. Renewable Energy 54 ( JUN):241–47. doi:10.1016/j.renene.2012.08.001.
  • Kim, Y. S., Y. S. Kim, and S. H. Kim. 2010. Investigation of thermodynamic parameters in the thermal decomposition of plastic waste-waste lube oil compounds. Environmental Science & Technology 44 (13):5313–17. doi:10.1021/es101163e.
  • Kissinger, E. H. 1957. Reaction kinetics in differential thermal analysis. Analytical Chemistry 29 (11):1702–06. doi:10.1021/ac60131a045.
  • Li, D., S. Lei, G. Rajput, L. Zhong, W. Ma, and G. Chen. 2021. Study on the co-pyrolysis of waste tires and plastics. Energy 226:120381. doi:10.1016/j.energy.2021.120381.
  • Liu, L., S. Luo, J. Wang, L. Xiang, D. Guo, Z. Zuo, and D. Guo. 2020. Copyrolysis of tire powder and engine oil: Reaction behavior and kinetics. Asia-Pacific Journal of Chemical Engineering 15 (S1). doi:10.1002/apj.2486.
  • Maia, A. A. D. 2016. Kinetic parameters of red pepper waste as biomass to solid biofuel. Bioresource Technology: Biomass, Bioenergy, Biowastes, Conversion Technologies, Biotransformations, Production Technologies 157-163.doi:10.1016/j.biortech.2015.12.055.
  • Martínez, J. D. 2021. An overview of the end-of-life tires status in some Latin American countries: Proposing pyrolysis for a circular economy. Renewable and Sustainable Energy Reviews 144 (54):111032. doi:10.1016/j.rser.2021.111032.
  • Mikulski, M., M. Ambrosewicz-Walacik, J. Hunicz, and S. Nitkiewicz. 2021. Combustion engine applications of waste tyre pyrolytic oil. Progress in Energy and Combustion Science 85:100915. doi:10.1016/j.pecs.2021.100915.
  • Mikulski, M., M. Ambrosewicz-Walacik, J. Hunicz, S. Nitkiewicz, S. Mukherjee, and B. C. Meikap. 2021. Pyrolysis of waste lubricating oil/waste motor oil to generate high-grade fuel oil: A comprehensive review. Renewable and Sustainable Energy Reviews 150:111446. doi:10.1016/j.rser.2021.111446.
  • Nisar, J., G. Ali, A. Shah, Z. H. Farooqi, and M. Gul. 2020. Pyrolysis of waste tire rubber: A comparative kinetic study using different models. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 1–11. doi:10.1080/15567036.2020.1823530.
  • Ortiz, L. R., E. Torres, D. Zalazar, H. Zhang, R. Rodriguez, and G. Mazza. 2020. Influence of pyrolysis temperature and bio-waste composition on biochar characteristics. Renewable Energy 155. doi:10.1016/j.renene.2020.03.181.
  • Pan, S., W. Xiaoyu, Wang, and S. Shifeng. 2018. Effect of styrene butadiene rubber on the light pyrolysis of the natural rubber. Polymer Degradation & Stability 147:168–76. jan. doi:10.1016/j.polymdegradstab.2017.12.006.
  • Qiang, H., A. Zt, A. Dy, A. Hy, A. Js, and A. Hc. 2020. Thermal behavior, kinetics and gas evolution characteristics for the co-pyrolysis of real-world plastic and tyre wastes. Journal of Cleaner Production 260. doi:10.1016/j.jclepro.2020.121102.
  • Quek, A., and R. Balasubramanian. 2013. Liquefaction of waste tires by pyrolysis for oil and chemicals—A review. Journal of Analytical & Applied Pyrolysis 101 (may):1–16. doi:10.1016/j.jaap.2013.02.016.
  • Sathiskumar, C., and S. Karthikeyan. 2019. Recycling of waste tires and its energy storage application of by-products-a review. Sustainable Materials and Technologies 22:e00125. doi:10.1016/j.susmat.2019.e00125.
  • Seok Kim, Y., S. Uk Jeong, W. Lai Yoon, H. Kee Yoon, and S. Hyun Kim. 2003. Tar-formation kinetics and adsorption characteristics of pyrolyzed waste lubricating oil. Journal of Analytical & Applied Pyrolysis 70 (1):19–33. doi:10.1016/S0165-2370(02)00072-4.
  • Singh, G. 2019. Pyrolysis kinetic study of waste milk packets using thermogravimetric analysis and product characterization. Journal of Material Cycles and Waste Management 21 (6):1350–60. doi:10.1007/s10163-019-00891-9.
  • Tang, X., Z. Chen, C. Jingyong, Z. Chen, W. Xie, F. Evrendilek, and M. Buyukada. 2020. Dynamic pyrolysis behaviors, products, and mechanisms of waste rubber and polyurethane bicycle tires. Journal of Hazardous Materials 123516. doi:10.1016/j.jhazmat.2020.123516.
  • Torres-Sciancalepore, R., D. Asensio, D. Nassini, A. Fernandez, R. Rodriguez, G. Fouga, and G. Mazza. 2022. Assessment of the behavior of Rosa rubiginosa seed waste during slow pyrolysis process towards complete recovery: Kinetic modeling and product analysis. Energy Conversion and Management 272:116340. doi:10.1016/j.enconman.2022.116340.
  • Torres-Sciancalepore, R., A. Fernandez, D. Asensio, M. Riveros, M. P. Fabani, G. Fouga, R. Rodriguez, and G. Mazza. 2022. Kinetic and thermodynamic comparative study of quince bio-waste slow pyrolysis before and after sustainable recovery of pectin compounds. Energy Conversion and Management 252 (4):115076. doi:10.1016/j.enconman.2021.115076.
  • Torretta, V., E. C. Trulli, L. Ionel, E. Trulli, I. A. Istrate, and L. I. Cioca. 2015. Treatment and disposal of tyres: Two EU approaches. A review. Waste Management 45:152–60. doi:10.1016/j.wasman.2015.04.018.
  • Turmanova, S. C., S. D. Genieva, A. S. Dimitrova, and L. T. Vlaev. 2008. Non-isothermal degradation kinetics of filled with rise husk ash polypropene composites. Express Polymer Letters 2 (2):133–46. doi:10.3144/expresspolymlett.2008.18.
  • Uçar, S., S. Karagöz, J. Yanik, M. Saglam, and M. Yuksel. 2005. Copyrolysis of scrap tires with waste lubricant oil. Fuel Processing Technology 87 (1):53–58. doi:10.1016/j.fuproc.2005.06.001.
  • Wang, J., X. Qi, X. Dong, S. Luo, Y. Feng, M. Feng, and X. Guo. 2022. The co-pyrolysis of waste tires and waste engine oil. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 44 (4):49764–78. doi:10.1080/15567036.2022.2136797.
  • Wang, J., and Z. Zhong. 2017. Co-pyrolysis of bamboo residual with waste tire over dual catalytic stage of CaO and co-modified HZSM-5. Energy. 133(aug.15):90–98. doi:10.1016/j.energy.2017.05.146.
  • Yan, X., J. Hu, Q. Zhang, S. Zhao, J. Dang, and W. Wang. 2020. Chemical-looping gasification of corn straw with Fe-based oxygen carrier: Thermogravimetric analysis. Bioresource Technology 303:122904. doi:10.1016/j.biortech.2020.122904.
  • Zalazar-Garcia, D., A. Fernandez, L. Cavaliere, Y. Deng, J. Soria, R. Rodriguez, and G. Mazza. 2022. Slow pyrolysis of pistachio-waste pellets: Combined phenomenological modeling with environmental, exergetic, and energetic analysis (3-E). Biomass Conversion and Biorefinery. doi:10.1007/s13399-022-03232-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.