177
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigation of S1046 profile bladed vertical axis wind turbine and artificial intelligence-based performance evaluation

, ORCID Icon, , &
Pages 8771-8790 | Received 31 Jan 2023, Accepted 17 Jun 2023, Published online: 07 Jul 2023

References

  • Aftab, S. M. A., N. A. Razak, A. S. Mohd Rafie, and K. A. Ahmad. 2016. Mimicking the humpback whale: An aerodynamic perspective. Progress in Aerospace Sciences 84:48–69. doi:10.1016/j.paerosci.2016.03.002.
  • Alam, M. S., M. D. Miah, S. Hammoudeh, and A. K. Tiwari. 2018. The nexus between access to electricity and labour productivity in developing countries. Energy Policy 122:715–26. doi:10.1016/j.enpol.2018.08.009.
  • Aresti, L., M. Tutar, Y. Chen, and R. K. Calay. 2013. Computational study of a small scale vertical axis wind turbine (VAWT): Comparative performance of various turbulence models. Wind and Structures 17 (6):647–70. doi:10.12989/was.2013.17.6.647.
  • Breiman, L. 2001. Random forests. Machine Learning 45 (1):5–32. doi:10.1023/A:1010933404324.
  • Brownlee, J. 2021. Ensemble learning algorithms with python: Make better predictions with bagging, boosting, and stacking. Machine Learning Mastery.
  • Chen, Y., S. Jie, Z. Han, Y. Zhao, D. Zhou, H. Yang e, Y. Bao, and H. Lei. 2020. A shape optimization of f-shape Darrieus wind turbine under a given range of inlet wind speed. Renewable Energy 159:286–99. doi:10.1016/j.renene.2020.05.038.
  • Douak, M., Z. Aouachria, R. Rabehi, and N. Allam. 2018. Wind energy systems: Analysis of the self-starting physics of vertical axis wind turbine. Renewable and Sustainable Energy Reviews 81:1602–10. doi:10.1016/j.rser.2017.05.238.
  • Doustmohammadi, H., and A. Akbari Foroud. 2020. A novel flicker detection method for vertical axis wind turbine using two‐dimensional discrete wavelet transform. International Transactions on Electrical Energy Systems 30 (11):12584. doi:10.1002/2050-7038.12584.
  • Durhasan, T., E. Pinar, G. M. Ozkan, M. M. Aksoy, H. Akilli, and B. Sahin. 2018. PIV measurement downstream of perforated cylinder in deep water. European Journal of Mechanics/B Fluids 72:225–34. doi:10.1016/j.euromechflu.2018.06.001.
  • Ghasemian, M., Z. N. Ashrafi, and A. Sedaghat. 2017. A review on computational fluid dynamic simulation techniques for Darrieus vertical axis wind turbines. Energy Conversion & Management 149:87–100. doi:https://doi.org/10.1016/j.enconman.2017.07.016.
  • Hand, B., G. Kelly, and A. Cashman. 2021. Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: A comprehensive review. Renewable and Sustainable Energy Reviews 139:110699. doi:10.1016/j.rser.2020.110699.
  • Heinermann, J., and O. Kramer. 2016. Machine learning ensembles for wind power prediction. Renewable Energy 89:671–79. doi:10.1016/j.renene.2015.11.073.
  • Hossain, A., A. Rahman, M. Rahman, S. K. Hasan, and J. Hossen. 2009. Prediction of power generation of small scale vertical axis wind turbine using fuzzy logic. Journal of Urban and Environmental Engineering 3 (2):43–51. doi:10.4090/juee.2009.v3n2.043051.
  • Hu, R. L., K. Leahy, I. C. Konstantakopoulos, D. M. Auslander, C. J. Spanos, and A. M. Agogino. December 18-20, 2016. Using domain knowledge features for wind turbine diagnostics. In 15th IEEE International Conference on Machine Learning and Applications (ICMLA), 300–07. Anaheim, California, USA: IEEE.
  • Liang, X., S. Fu, B. Ou, C. Wu, C. Y. H. Chao, and K. Pi. 2017. A computational study of the effects of the radius ratio and attachment angle on the performance of a Darrieus-Savonius combined wind turbine. Renew Energy 113:329–34. doi:10.1016/j.renene.2017.04.071.
  • Liu, K., X. Hu, H. Zhou, L. Tong, D. Widanalage, & J. Marco (2021). Feature analyses and modelling of lithium-ion batteries manufacturing based on random forest classification. IEEE/ASME Transactions on Mechatronics.
  • Liu, C., D. Jiang, and W. Yang. 2014. Global geometric similarity scheme for feature selection in fault diagnosis. Expert Systems with Applications 41 (8):3585–95. doi:10.1016/j.eswa.2013.11.037.
  • Liu, Z., Y. Wang, X. Hua, H. Zhu, and Z. Zhu. 2021. Optimization of wind turbine TMD under real wind distribution countering wake effects using GPU acceleration and machine learning technologies. Journal of Wind Engineering and Industrial Aerodynamics 208:104436. doi:10.1016/j.jweia.2020.104436.
  • Li, Y., S. Zhao, K. Tagawa, and F. Feng. 2018. Starting performance effect of a truncated-coneshaped wind gathering device on small-scale straight-bladed vertical axis wind turbine. Energy Convers Mgmt 167:70–80. doi:10.1016/j.enconman.2018.04.062.
  • Maki, K., R. Sbragio, and N. Vlahopoulos. 2012. System design of a wind turbine using a multi-level optimization approach. Renewable Energy 43:101–10. doi:10.1016/j.renene.2011.11.027.
  • Manshadi, M. D. 2011. The importance of turbulence in assessment of wind tunnel flow quality. In Wind tunnels and experimental fluid dynamics research, ed. J. Lerner, 261–78. Rijeka, Croatia: Intech.
  • McCauley, D., and R. Heffron. 2018. Just transition: Integrating climate, energy and environmental justice. Energy Policy 119:1–7. doi:10.1016/j.enpol.2018.04.014.
  • Menze, B. H., B. M. Kelm, R. Masuch, U. Himmelreich, P. Bachert, W. Petrich, and F. A. Hamprecht. 2009. A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data. BMC Bioinformatics 10 (1):1–16. doi:10.1186/1471-2105-10-213.
  • Myles, A. J., R. N. Feudale, Y. Liu, N. A. Woody, and S. D. Brown. 2004. An introduction to decision tree modeling. Journal of Chemometrics 18 (6):275–85. doi:10.1002/cem.873.
  • Peterson, L. E. 2009. K-nearest neighbor. Scholarpedia 4 (2):1883. doi:10.4249/scholarpedia.1883.
  • Qamar, S. B., and I. Janajreh. 2017. A comprehensive analysis of solidity for cambered darrieus VAWTs. International Journal of Hydrogen Energy 42 (30):19420–31. doi:http://dx.doi.org/10.1016/j.ijhydene.2017.06.041.
  • Rehman, S., M. M. Rafique, M. M. Alam, and L. M. Alhems. 2019. Vertical axis wind turbine types, efficiencies, and structural stability. A Review, Wind and Structure 29 (1):15–32. doi:10.12989/was.2019.29.1.015.
  • Reid, A. J., J. L. Brooks, L. Dolgova, B. Laurich, B. G. Sullivan, P. Szekeres, S. L. R. Wood, J. R. Bennett, and S. J. Cooke. 2017. Sustainable development goals still neglecting their environmental roots in the anthropocene. Environmental Science Policy 2017 77:179–84. doi:10.1016/j.envsci.07.006.
  • Richmond, M., A. Sobey, R. Pandit, and A. Kolios. 2020. Stochastic assessment of aerodynamics within offshore wind farms based on machine-learning. Renewable Energy 161:650–61. doi:10.1016/j.renene.2020.07.083.
  • Ross, A., and A. Altman. 2011. Wind tunnel blockage corrections: Review and application to Savonius vertical-axis wind turbines. Journal of Wind Engineering & Industrial Aerodynamics 99 (5):523–38. doi:10.1016/j.jweia.2011.02.002.
  • Shcherbakov, M. V., A. Brebels, N. L. Shcherbakova, A. P. Tyukov, T. A. Janovsky, and V. A. E. Kamaev. 2013. A survey of forecast error measures. World Applied Sciences Journal 24 (24):171–76.
  • Sohankar, A., M. Khodadadi, and E. Rangraz. 2015. Control of fluid flow and heat transfer around a square cylinder by uniform suction blowing at low Reynolds number. Computer and Fluids 109:155–67. 10 March 2015. doi:10.1016/j.compfluid.2014.12.020.
  • Teksin, S., N. Azginoglu, and S. O. Akansu. 2022. Structure estimation of vertical axis wind turbine using artificial neural network. Alexandria Engineering Journal 61 (1):305–14. doi:10.1016/j.aej.2021.05.002.
  • Teksin, S., and S. Yayla. 2017. Effects of flexible splitter plate to the rear of the cylinder on flow structure. Journal of Mechanical Science and Technology 31 (3):1195~1201. doi:10.1007/s12206-017-0218-y.
  • Ti, Z., X. W. Deng, and H. Yang. 2020. Wake modeling of wind turbines using machine learning. Applied Energy 257:114025. doi:10.1016/j.apenergy.2019.114025.
  • Tummala, A., R. K. Velamati, D. K. Sinha, V. Indraja, and V. H. Krishna. 2016. A review on small scale wind turbines. Renewable and Sustainable Energy Reviews 56:1351–71. doi:10.1016/j.rser.2015.12.027.
  • Xu, D., Y. Shi, I. W. Tsang, Y. S. Ong, C. Gong, and X. Shen. 2019. Survey on multi-output learning. IEEE Transactions on Neural Networks and Learning Systems 31 (7):2409–29. doi:10.1109/TNNLS.2019.2945133.
  • Yahya, S. M. 2013. Turbine, compressors and fans. 4th ed. India: Tata McGrawhill Education.
  • Yilmaz, I., Ö. Çam, M. Taştan, and A. KARCI. 2016. Experimental Investigation of aerodynamic performance of different wind turbine airfoils. Journal of Polytechnic 19 (4):577–84.
  • Yin, X., and Z. Jiang. 2023. Wave condition preview assisted real-time nonlinear predictive control of point-absorbing wave energy converter based on long short-term memory recurrent neural identification. Mechanical Systems and Signal Processing 188:188 109669. doi:10.1016/j.ymssp.2022.109669.
  • Yin, X., Z. Jiang, and M. Lei. 2022. Quantifying the effects of high-speed shaft braking on the substructural dynamics of monopile offshore wind turbines, energy sources, Part A: Recovery. Utilization, and Environmental Effects 44 (4):9779–95. doi:10.1080/15567036.2022.2132321.
  • Yin, X., and M. Lei. 2022. Deep reinforcement learning based coastal seawater desalination via a pitching paddle wave energy converter. Desalination 543:543 115986. doi:10.1016/j.desal.2022.115986.
  • Yin, X., X. Li, and L. Zuo. 2021. Dynamic characteristics and test results of a wave power takeoff system with mechanical motion rectification and transmission. IEEE Transactions on Industrial Electronics 68 (12):12262–71. doi:10.1109/TIE.2018.2864715.
  • Yin, X., L. Pan, and M. Lei. 2022. Maximizing tidal energy conversion by adopting hydraulic transformation and LMI based robust control. Renewable Energy 195:331–43. doi:10.1016/j.renene.2022.05.034.
  • Yin, X., W. Yang, and J. Yang. 2022. Influence of emergency mechanical braking on the supporting platform performances of floating offshore wind turbines. Ocean Engineering 266:266 112010. doi:10.1016/j.oceaneng.2022.112010.
  • Yin, X., X. Zhao, and W. Zhang. 2018. A novel hydro-kite like energy converter for harnessing both ocean wave and current energy. Energy 158:1204–12. doi:10.1016/j.energy.2018.03.121.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.