108
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Stability properties of slurry based on coal-to-liquid gasification ash slag

, , , &
Pages 9731-9742 | Received 21 Feb 2023, Accepted 16 Jul 2023, Published online: 01 Aug 2023

References

  • Bao, X. 2022. The ‘energy revolution’ calls for technological innovation. National Science Review 9 (7):nwac117. doi:10.1093/nsr/nwac117.
  • Dincer, H., F. Boylu, A. A. Sirkeci, and G. Ateşok. 2003. The effect of chemicals on the viscosity and stability of coal water slurries. International Journal of Mineral Processing 70 (1–4):41–51. doi:10.1016/S0301-7516(02)00149-7.
  • Fu, W., Z. Wang, J. Zhang, Y. Cao, and B. Sun. 2020. Investigation of rheological properties of methane hydrate slurry with carboxmethylcellulose. Journal of Petroleum Science and Engineering 184:106504. doi:10.1016/j.petrol.2019.106504.
  • Gao, S., Y. Zhang, H. Li, J. He, H. Xu, and C. Wu. 2021. The microwave absorption properties of residual carbon from coal gasification fine slag. Fuel 290:120050. doi:10.1016/j.fuel.2020.120050.
  • Huang, J., J. Xu, D. Wang, L. Li, and X. Guo. 2013. Effects of amphiphilic copolymer dispersants on rheology and stability of coal water slurry. Industrial & Engineering Chemistry Research 52 (25):8427–35. doi:10.1021/ie400681f.
  • Kong, B., Z. Li, Y. Yang, Z. Liu, and D. Yan. 2017. A review on the mechanism, risk evaluation, and prevention of coal spontaneous combustion in China. Environmental Science and Pollution Research 24 (30):23453–70. doi:10.1007/s11356-017-0209-6.
  • Lang, L., N. Liu, and B. Chen. 2020. Strength development of solidified dredged sludge containing humic acid with cement, lime and nano-SiO2. Construction and Building Materials 230:116971. doi:10.1016/j.conbuildmat.2019.116971.
  • Li, Y. M., A. Khurshid, and K. Khan. 2023. Optimization of coal-to-liquid processes; a way forward towards carbon neutrality, high economic returns and effective resource utilization. Evidences from China. Fuel 344:128082. doi:10.1016/j.fuel.2023.128082.
  • Li, S., F. Sha, R. Liu, Q. Zhang, and Z. Li. 2017. Investigation on fundamental properties of microfine cement and cement-slag grouts. Construction and Building Materials 153:965–74. doi:10.1016/j.conbuildmat.2017.05.188.
  • Liu, X., Z. Jin, Y. Jing, P. Fan, Z. Qi, W. Bao, J. C. Wang, X. H. Yan, L. Peng, and L. Dong. 2021. Review of the characteristics and graded utilisation of coal gasification slag. Chinese Journal of Chemical Engineering 35:92–106. doi:10.1016/j.cjche.2021.05.007.
  • Li, Z., Y. Zhang, H. Zhao, H. Chen, and R. He. 2019a. Structure characteristics and composition of hydration products of coal gasification slag mixed cement and lime. Construction and Building Materials 213:265–74. doi:10.1016/j.conbuildmat.2019.03.163.
  • Li, X., L. Zhi, C. He, L. Kong, J. Bai, S. Guhl, B. Meyer, and W. Li. 2019b. The factors on metallic iron crystallization from slag of direct coal liquefaction residue SiO2-Al2O3-Fe2O3-CaO-MgO-TiO2-Na2O-K2O system in the entrained flow gasification condition. Fuel 246:417–24. doi:10.1016/j.fuel.2019.03.017.
  • Luo, F., Y. Jiang, and C. Wei. 2021. Potential of decarbonized coal gasification residues as the mineral admixture of cement-based material. Construction and Building Materials 269:121259. doi:10.1016/j.conbuildmat.2020.121259.
  • Lu, W., X. Zhang, Y. Yuan, G. Qi, X. Hu, J. Li, Y. Liang, and B. Guo. 2021. Study on the characteristics and mechanism of a new type of antioxidant gel foam for coal spontaneous combustion prevention. Colloids and Surfaces A: Physicochemical and Engineering Aspects 628:127254. doi:10.1016/j.colsurfa.2021.127254.
  • Lv, B., X. Deng, F. Jiao, B. Dong, C. Fang, and B. Xing. 2023. Enrichment and utilization of residual carbon from coal gasification slag: A review. Process Safety and Environmental Protection 171:859–73. doi:10.1016/j.psep.2023.01.079.
  • Ma, C., X. Li, J. Lyu, M. He, Z. Wang, L. Li, and X. You. 2023a. Study on characteristics of coal gasification fine slag-coal water slurry slurrying, combustion, and ash fusion. Fuel 332:126039. doi:10.1016/j.fuel.2022.126039.
  • Ma, T., X. W. Zhai, Y. Xiao, Y. E. Bai, K. Shen, B. B. Song, L. Hao, L. F. Ren, and X. K. Chen. 2023b. Study on the influence of key active groups on gas products in spontaneous combustion of coal. Fuel 344:128020. doi:10.1016/j.fuel.2023.128020.
  • Onifade, M., and B. Genc. 2018. Spontaneous combustion of coals and coal-shales. International Journal of Mining Science and Technology 28 (6):933–40. doi:10.1016/j.ijmst.2018.05.013.
  • Palmqvist, L., O. Lyckfeldt, E. Carlström, P. Davoust, A. Kauppi, and K. Holmberg. 2006. Dispersion mechanisms in aqueous alumina suspensions at high solids loadings. Colloids and Surfaces A: Physicochemical and Engineering Aspects 274 (1–3):100–09. doi:10.1016/j.colsurfa.2005.08.039.
  • Sanin, D. F. 2002. Effect of solution physical chemistry on the rheological properties of activated sludge. Water SA 28 (2):207–12. doi:10.4314/wsa.v28i2.4886.
  • Shi, B., C. Chen, and P. Liu. 2021. Rheological properties of combustion metamorphic rock slurry for coalfield fire prevention. Bulletin of Engineering Geology and the Environment 80 (10):8231–45. doi:10.1007/s10064-021-02397-x.
  • Shi, B., S. Song, Y. Chen, X. Duan, Q. Liao, S. Fu, L. Liu, J. Sui, J. Jia, H. Liu, et al. 2021. Status of natural gas hydrate flow assurance research in China: A review. Energy & Fuels 35 (5):3611–58. doi:10.1021/acs.energyfuels.0c04209.
  • Song, Z., and C. Kuenzer. 2014. Coal fires in China over the last decade: A comprehensive review. International Journal of Coal Geology 133:72–99. doi:10.1016/j.coal.2014.09.004.
  • Song, B., X. Zhai, T. Ma, B. Wang, L. Hao, and Y. Zhou. 2023. Effect of water immersion on pore structure of bituminous coal with different metamorphic degrees. Energy 274:127449. doi:10.1016/j.energy.2023.127449.
  • Wang, T., H. Huang, C. Yu, K. Fang, M. Zheng, and Z. Luo. 2018a. Understanding cost reduction of China’s biomass direct combustion power generation—A study based on learning curve model. Journal of Cleaner Production 188:546–55. doi:10.1016/j.jclepro.2018.03.258.
  • Wang, X. L., J. Shen, Y. X. Niu, Y. G. Wang, G. Liu, and Q. T. Sheng. 2018b. Removal of phenol by powdered activated carbon prepared from coal gasification tar residue. Environmental Technology 39 (6):694–701. doi:10.1080/09593330.2017.1310304.
  • Wang, J., and P. Somasundaran. 2005. Adsorption and conformation of carboxymethyl cellulose at solid–liquid interfaces using spectroscopic, AFM and allied techniques. Journal of Colloid and Interface Science 291 (1):75–83. doi:10.1016/j.jcis.2005.04.095.
  • Xu, Y., L. Wang, T. Chu, and D. Liang. 2014. Suspension mechanism and application of sand-suspended slurry for coalmine fire prevention. International Journal of Mining Science and Technology 24 (5):649–56. doi:10.1016/j.ijmst.2014.03.029.
  • Zhang, N., X. Chen, T. Nicholson, and Y. Peng. 2019. The effect of saline water on the settling of coal slurry and coal froth. Powder Technology 344:161–68. doi:10.1016/j.powtec.2018.12.036.
  • Zhang, Y., Z. Xu, D. Liu, Y. Chen, W. Zhao, and G. Ren. 2022. The influence of water occurrences in CWSs made of lignite and bituminous coal on slurrying performances. Powder Technology 398:117150. doi:10.1016/j.powtec.2022.117150.
  • Zheng, X. Z., P. L. Wu, Y. N. Zhang, D. Zhang, and H. Guo. 2022. Preparation of gasification ash slag gel and its inhibitory performance to coal spontaneous combustion. Safety in Coal Mines 53 (1):24–30. in Chinese.
  • Zhou, L., M. Duan, and Y. Yu. 2018. Exergy and economic analyses of indirect coal-to-liquid technology coupling carbon capture and storage. Journal of Cleaner Production 174:87–95. doi:10.1016/j.jclepro.2017.10.229.
  • Zhu, H., H. Li, X. Ma, F. Wu, Q. Zhou, and Y. Bai. 2021. Combined effect of coal chemical wastewater and PC on preparing of coal-to-liquids residue-based alkali activated materials. Journal of Hazardous Materials 405:124229. doi:10.1016/j.jhazmat.2020.124229.
  • Zhu, J. F., J. Z. Liu, Y. M. Yang, J. Cheng, J. H. Zhou, and K. F. Cen. 2016. Fractal characteristics of pore structures in 13 coal specimens: Relationship among fractal dimension, pore structure parameter, and slurry ability of coal. Fuel Processing Technology 149:256–67. doi:10.1016/j.fuproc.2016.04.026.
  • Zi, M., D. Chen, J. Wang, P. Hu, and G. Wu. 2019. Kinetic and rheological study of methane hydrate formation in water-in-oil emulsion: Effects of emulsion composition and silica sands. Fuel 255:115708. doi:10.1016/j.fuel.2019.115708.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.