81
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Heavy metals pollution and potential ecological risk assessment in farmland soils from typical mining area: a case study

ORCID Icon, , & ORCID Icon
Pages 11467-11481 | Received 16 Nov 2022, Accepted 13 Sep 2023, Published online: 22 Sep 2023

References

  • Adio, S. O., M. H. Omar, M. Asif, and T. A. Saleh. 2017. Arsenic and selenium removal from water using biosynthesized nanoscale zero-valent iron: A factorial design analysis. Process Safety and Environmental Protection 107:518–27. doi:10.1016/j.psep.2017.03.004.
  • Alan, M., and D. Kara. 2019b. Comparison of a new sequential extraction method and the BCR sequential extraction method for mobility assessment of elements around boron mines in Turkey. Talanta 194:189–98. doi:10.1016/j.talanta.2018.10.030.
  • Chang, C., F. Li, Q. Wang, M. Hu, Y. Du, X. Zhang, X. Zhang, C. Chen, and H. Y. Yu. 2022. Bioavailability of antimony and arsenic in a flowering cabbage–soil system: Controlling factors and interactive effect. Science of the Total Environment 815:152920. doi:10.1016/j.scitotenv.2022.152920.
  • Dash, S., S. S. Borah, and A. S. Kalamdhad. 2021. Heavy metal pollution and potential ecological risk assessment for surficial sediments of deepor beel, India. Ecological Indicators 122:107265. doi:10.1016/j.ecolind.2020.107265.
  • Doabi, S. A., M. Karami, M. Afyuni, and M. Yeganeh. 2018. Pollution and health risk assessment of heavy metals in agricultural soil, atmospheric dust and major food crops in Kermanshah province, Iran. Ecotoxicology and Environmental Safety 163:153–64. doi:10.1016/j.ecoenv.2018.07.057.
  • Fei, X., Z. Lou, R. Xiao, Z. Ren, and X. Lv. 2022. Source analysis and source-oriented risk assessment of heavy metal pollution in agricultural soils of different cultivated land qualities. Journal of Cleaner Production 341:130942. doi:10.1016/j.jclepro.2022.130942.
  • Feng, Y., Q. Bao, X. Xiao, and M. Lin. 2019. Geo-accumulation vector model for evaluating the heavy metal pollution in the sediments of Western Dongting Lake. Journal of Hydrology 573:40–48. doi:10.1016/j.jhydrol.2019.03.064.
  • Fernández-Ondoño, E., G. Bacchetta, A. M. Lallena, F. B. Navarro, I. Ortiz, and M. N. Jiménez. 2017. Use of BCR sequential extraction procedures for soils and plant metal transfer predictions in contaminated mine tailings in Sardinia. Journal of Geochemical Exploration 172:133–41. doi:10.1016/j.gexplo.2016.09.013.
  • Hakanson, L. 1980. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research 14 (8):975–1001. doi:10.1016/0043-1354(80)90143-8.
  • Kheir, R. B., B. Shomar, M. B. Greve, and M. H. Greve. 2014. On the quantitative relationships between environmental parameters and heavy metals pollution in Mediterranean soils using GIS regression-trees: The case study of Lebanon. Journal of Geochemical Exploration 147:250–59. doi:10.1016/j.gexplo.2014.05.015.
  • Kong, F., Y. Ying, and S. Lu. 2022. Heavy metal pollution risk of desulfurized steel slag as a soil amendment in cycling use of solid wastes. Journal of Environmental Sciences 127:349–60. doi:10.1016/j.jes.2022.05.010.
  • Li, K., Y. Gu, M. Li, L. Zhao, J. Ding, Z. Lun, and W. Tian. 2018. Spatial analysis, source identification and risk assessment of heavy metals in a coal mining area in Henan, Central China. International Biodeterioration and Biodegradation 128:148–54. doi:10.1016/j.ibiod.2017.03.026.
  • Liu, Z., Y. Fei, H. Shi, L. Mo, and J. Qi. 2022. Prediction of high-risk areas of soil heavy metal pollution with multiple factors on a large scale in industrial agglomeration areas. Science of the Total Environment 808:151874. doi:10.1016/j.scitotenv.2021.151874.
  • Liu, H., A. Probst, and B. Liao. 2005. Metal contamination of soils and crops affected by the chenzhou lead/zinc mine spill (Hunan, China). Science of the Total Environment 339 (1–3):153–66. doi:10.1016/j.scitotenv.2004.07.030.
  • Luo, X., C. Wu, Y. Lin, W. Li, M. Deng, J. Tan, and S. Xue. 2022. Soil heavy metal pollution from Pb/Zn smelting regions in China and the remediation potential of biomineralization. Journal of Environmental Sciences 125:662–77. doi:10.1016/j.jes.2022.01.029.
  • Mathee, A., T. Kootbodien, T. Kapwata, and N. Naicker. 2018. Concentrations of arsenic and lead in residential garden soil from four Johannesburg neighborhoods. Environmental Research 167:524–27. doi:10.1016/j.envres.2018.08.012.
  • Negahban, S., M. Mokarram, H. R. Pourghasemi, and H. Zhang. 2020. Ecological risk potential assessment of heavy metal contaminated soils in ophiolitic formations. Environmental Research 192:110305. doi:10.1016/j.envres.2020.110305.
  • Nezhad, M. T. K., S. M. Tabatabaii, and A. Gholami. 2015. Geochemical assessment of steel smelter-impacted urban soils, Ahvaz, Iran. Journal of Geochemical Exploration 152:91–109. doi:10.1016/j.gexplo.2015.02.005.
  • Pan, L., J. Ma, Y. Hu, B. Su, G. Fang, Y. Wang, Z. Wang, L. Wang, and B. Xiang. 2016. Assessments of levels, potential ecological risk, and human health risk of heavy metals in the soils from a typical county in Shanxi Province, China. Environmental Science and Pollution Research 23 (19):19330–40. doi:10.1007/s11356-016-7044-z.
  • Qiao, Y. F., H. Hou, L. G. Chen, H. L. Wang, P. Jeyakumar, and D. J. Han. 2022. Comparison of Pb and Cd in wheat grains under air-soil-wheat system near lead-zinc smelters and total suspended particulate introduced modeling attempt. Science of the Total Environment 839:156290. doi:10.1016/j.scitotenv.2022.156290.
  • Qiao, P. W., S. Wang, J. Li, Y. Shan, Y. Wei, Z. Zhang, and M. Lei. 2023. Quantitative analysis of the contribution of sources, diffusion pathways, and receptor attributes for the spatial distribution of soil heavy metals and their nested structure analysis in China. Science of the Total Environment 882:163647. doi:10.1016/j.scitotenv.2023.163647.
  • Qureshi Arsalan, A., G. Kazi Tasneem, A. Baig Jameel, A. Mohammad Balal, and I. Afridi Hassan. 2020. Exposure of heavy metals in coal gangue soil, in and outside the mining area using BCR conventional and vortex assisted and single step extraction methods. Impact on orchard grass. Chemosphere 255:126960. doi:10.1016/j.chemosphere.2020.126960.
  • Sani, H. A., M. B. Ahmad, M. Z. Hussein, N. A. Ibrahim, A. Musa, and T. A. Saleh. 2017. Nanocomposite of ZnO with montmorillonite for removal of lead and copper ions from aqueous solutions. Process Safety and Environmental Protection 109:97–105. doi:10.1016/j.psep.2017.03.024.
  • Shen, B., X. Wang, Y. Zhang, M. Zhang, K. Wang, P. Xie, and H. Ji. 2020. The optimum pH and eh for simultaneously minimizing bioavailable cadmium and arsenic contents in soils under the organic fertilizer application. Science of the Total Environment 711:135229. doi:10.1016/j.scitotenv.2019.135229.
  • Wang, N., Q. Guan, Y. Sun, B. Wang, Y. Ma, W. Shao, and H. Li. 2021. Predicting the spatial pollution of soil heavy metals by using the distance determination coefficient method. Science of the Total Environment 799:149452. doi:10.1016/j.scitotenv.2021.149452.
  • Wang, S., J. Liu, J. Li, G. Xu, J. Qiu, and B. Chen. 2020. Environmental magnetic parameter characteristics as indicators of heavy metal pollution in the surface sediments off the Zhoushan islands in the East China sea. Marine Pollution Bulletin 150:110642. doi:10.1016/j.marpolbul.2019.110642.
  • Xu, D. M., and R. B. Fu. 2022. Mechanistic insight into the release behavior of arsenic (As) based on its geochemical fractions in the contaminated soils around lead/zinc (Pb/Zn) smelters. Journal of Cleaner Production 363:132348. doi:10.1016/j.jclepro.2022.132348.
  • Yang, Y., G. Christakos, M. Guo, L. Xiao, and W. Huang. 2017. Space-time quantitative source apportionment of soil heavy metal concentration increments. Environmental Pollution 223:560–66. doi:10.1016/j.envpol.2017.01.058.
  • Yang, X., Y. Yang, Y. Wan, R. Wu, D. Feng, and K. Li. 2021. Source identification and comprehensive apportionment of the accumulation of soil heavy metals by integrating pollution landscapes, pathways, and receptors. Science of the Total Environment 786:147436. doi:10.1016/j.scitotenv.2021.147436.
  • Yan, K., H. Z. Wang, Z. Lan, J. H. Zhou, H. Z. Fu, L. S. Wu, and J. M. Xu. 2022. Heavy metal pollution in the soil of contaminated sites in China: Research status and pollution assessment over the past two decades. Journal of Cleaner Production 373:133780. doi:10.1016/j.jclepro.2022.133780.
  • Yu, K., M. Van Geel, T. Ceulemans, W. Geerts, M. M. Ramos, C. Serafim, N. Sousa, P. M. L. Castro, P. Kastendeuch, G. Najjar, et al. 2018. Vegetation reflectance spectroscopy for biomonitoring of heavy metal pollution in urban soils. Environmental Pollution 243:1912–22. doi:10.1016/j.envpol.2018.09.053.
  • Zang, F., S. Wang, Z. Nan, J. Ma, Q. Zhang, Y. Chen, and Y. Li. 2017. Accumulation, spatio-temporal distribution, and risk assessment of heavy metals in the soil-corn system around a polymetallic mining area from the loess plateau, northwest China. Geoderma 305:188–96. doi:10.1016/j.geoderma.2017.06.008.
  • Zeng, W., X. Wan, L. Wang, M. Lei, T. Chen, and G. Gu. 2022. Apportionment and location of heavy metal (loid) s pollution sources for soil and dust using the combination of principal component analysis, geodetector, and multiple linear regression of distance. Journal of Hazardous Materials 438:129468. doi:10.1016/j.jhazmat.2022.129468.
  • Zhang, Y. X., B. Song, and Z. Y. Zhou. 2023. Pollution assessment and source apportionment of heavy metals in soil from lead – zinc mining areas of south China. Journal of Environmental Chemical Engineering 11 (2):109320. doi:10.1016/j.jece.2023.109320.
  • Zhao, J., E. Wu, B. Zhang, X. Bai, P. Lei, X. Qiao, Y. Li, B. Li, G. Wu, and Y. Gao. 2021. Pollution characteristics and ecological risks associated with heavy metals in the Fuyang river system in north China. Environmental Pollution 281:116994. doi:10.1016/j.envpol.2021.116994.
  • Zhong, X., Z. Chen, Y. Li, K. Ding, W. Liu, Y. Liu, Y. Yuan, M. Zhang, A. J. M. Baker, W. Yang, et al. 2020. Factors influencing heavy metal availability and risk assessment of soils at typical metal mines in Eastern China. Journal of Hazardous Materials 400:123289. doi:10.1016/j.jhazmat.2020.123289.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.