253
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Study on using nano magnesium oxide (MNMgO) nanoparticles as fuel additives in terebinth oil biodiesel blends in a research diesel engine

ORCID Icon, ORCID Icon & ORCID Icon
Pages 12181-12200 | Received 05 Jul 2023, Accepted 07 Oct 2023, Published online: 26 Oct 2023

References

  • Arul Mozhi Selvan, V., R. B. Anand, and M. Udayakumar. 2014. Effect of Cerium oxide nanoparticles and carbon Nanotubes as fuel-borne additives in diesterol blends on the performance, combustion and emission characteristics of a variable compression ratio engine. Fuel 130:160–67. doi:10.1016/j.fuel.2014.04.034.
  • Bednarski, M., P. Orliński, M. K. Wojs, and M. Sikora. 2019. Evaluation of methods for determining the combustion ignition delay in a diesel engine powered by liquid biofuel. Journal of the Energy Institute 92 (4):1107–14. doi:10.1016/j.joei.2018.06.007.
  • Beyaz, M., S. Aydın, R. Şener, and C. Sayin. 2023. Effects of ethyl proxitol (1-ethoxy-2-propanol) additive on combustion and emission characteristics of biodiesel blends. Biofuels 14 (8):817–24. doi:10.1080/17597269.2023.2184936.
  • Bidir, M. G., N. K. Millerjothi, M. S. Adaramola, and F. Y. Hagos. 2021. The role of nanoparticles on biofuel production and as an additive in ternary blend fuelled diesel engine: A review. Energy Reports 7:3614–27. doi:10.1016/j.egyr.2021.05.084.
  • Bochenkov, V. E., and G. B. Sergeev. 2007. Nanomaterials for sensors. Russian Chemical Reviews 76 (11):1013. doi:10.1070/RC2007v076n11ABEH003735.
  • Cai, L., J. Chen, Z. Liu, H. Wang, H. Yang, and W. Ding. 2018. Magnesium oxide nanoparticles: Effective agricultural antibacterial agent against Ralstonia solanacearum. Frontiers in Microbiology 9. doi:10.3389/fmicb.2018.00790.
  • Çelik, M., C. Bayındırlı, and M. Mehregan. 2022. Multi-objective optimization of a diesel engine fueled with different fuel types containing additives using grey-based Taguchi approach. Environmental Science and Pollution Research 29 (20):30277–84. doi:10.1007/s11356-021-18012-1.
  • Deviren, H., and H. Aydın. 2023. Production and physicochemical properties of safflower seed oil extracted using different methods and its conversion to biodiesel. Fuel 343:128001. doi:10.1016/j.fuel.2023.128001.
  • Ghoul, I. 2013. Food safety and standards authority of India (FSSAI). training manual for Food safety regulators. Vol. 1 New Delhi: Food Safety and Standards Authority of India.
  • Heidari-Maleni, A., T. Mesri-Gundoshmian, A. Jahanbakhshi, B. Karimi, and B. Ghobadian. 2021. Novel environmentally friendly fuel: The effect of adding graphene quantum dot (GQD) nanoparticles with ethanol-biodiesel blends on the performance and emission characteristics of a diesel engine. NanoImpact 21:100294. doi:10.1016/j.impact.2021.100294.
  • Hussain Vali, R., and M. Marouf Wani. 2020. Optimal utilization of ZnO nanoparticles blended diesel-water emulsion by varying compression ratio of a VCR diesel engine. Journal of Environmental Chemical Engineering 8 (4):103884. doi:10.1016/j.jece.2020.103884.
  • Janakiraman, S., T. Lakshmanan, V. Chandran, and L. Subramani. 2020. Comparative behavior of various nano additives in a DIESEL engine powered by novel Garcinia gummi-gutta biodiesel. Journal of Cleaner Production 245:118940. doi:10.1016/j.jclepro.2019.118940.
  • Karim, G. A., W. Jones, and R. R. Raine 1989. An examination of the ignition delay period in dual fuel engines. SAE Technical Paper. 10.4271/892140
  • Khan, T. M. Y. 2021. Direct transesterification for biodiesel production and testing the engine for performance and emissions run on biodiesel-diesel-nano blends. Nanomaterials 11 (2):417. doi:10.3390/nano11020417.
  • Khan, H., M. E. M. Soudagar, R. H. Kumar, M. R. Safaei, M. Farooq, A. Khidmatgar, N. R. Banapurmath, R. A. Farade, M. M. Abbas, A. Afzal, et al. 2020. Effect of nano-graphene oxide and n-butanol fuel additives blended with diesel—Nigella sativa biodiesel fuel emulsion on diesel engine characteristics. Symmetry 12 (6):961. doi:10.3390/sym12060961.
  • Kumar, S., P. Dinesha, and M. A. Rosen. 2019. Effect of injection pressure on the combustion, performance and emission characteristics of a biodiesel engine with cerium oxide nanoparticle additive. Energy 185:1163–73. doi:10.1016/j.energy.2019.07.124.
  • Kumar Nema, V., and A. Singh. 2018. Emission reduction in a dual blend biodiesel fuelled CI engine using nano- fuel additives. Materials Today: Proceedings 5 (9, Part 3):20754–59. doi:10.1016/j.matpr.2018.06.461.
  • Lv, J., S. Wang, and B. Meng. 2022. The effects of nano-additives added to diesel-biodiesel fuel blends on combustion and emission characteristics of diesel engine: A review. Energies 15 (3):1032. doi:10.3390/en15031032.
  • Nanthagopal, K., B. Ashok, A. Tamilarasu, A. Johny, and A. Mohan. 2017. Influence on the effect of zinc oxide and titanium dioxide nanoparticles as an additive with calophyllum inophyllum methyl ester in a CI engine. Energy Conversion and Management 146:8–19. doi:10.1016/j.enconman.2017.05.021.
  • Nutakki, P. K., S. K. Gugulothu, J. Ramachander, and M. Sivasurya. 2022. Effect of n-amyl alcohol/biodiesel blended nano additives on the performance, combustion and emission characteristics of CRDi diesel engine. Environmental Science and Pollution Research 29 (1):82–97. doi:10.1007/s11356-021-13165-5.
  • Ooi, J. B., H. M. Ismail, B. T. Tan, and X. Wang. 2018. Effects of graphite oxide and single-walled carbon nanotubes as diesel additives on the performance, combustion, and emission characteristics of a light-duty diesel engine. Energy 161:70–80. doi:10.1016/j.energy.2018.07.062.
  • Pan, S., J. Wei, C. Tao, G. Lv, Y. Qian, Q. Liu, and W. Han. 2021. Discussion on the combustion, performance and emissions of a dual fuel diesel engine fuelled with methanol-based CeO2 nanofluids. Fuel 302:121096. doi:10.1016/j.fuel.2021.121096.
  • Perumal, V., and M. Ilangkumaran. 2018. The influence of copper oxide nano particle added pongamia methyl ester biodiesel on the performance, combustion and emission of a diesel engine. Fuel 232:791–802. doi:10.1016/j.fuel.2018.04.129.
  • Prabakaran, B., and A. Udhoji. 2016. Experimental investigation into effects of addition of zinc oxide on performance, combustion and emission characteristics of diesel-biodiesel-ethanol blends in CI engine. Alexandria Engineering Journal 55 (4):3355–62. doi:10.1016/j.aej.2016.08.022.
  • Prabhu, A., M. Venkata Ramanan, J. Jayaprabakar, and V. Harish. 2021. Experimental investigation of emission characteristics on ricebran biodiesel–alcohol blends in a diesel engine. International Journal of Ambient Energy 42 (10):1123–28. doi:10.1080/01430750.2019.1586768.
  • Purushothaman, P., S. Masimalai, and V. Subramani. 2021. Effective utilization of mahua oil blended with optimum amount of Al2O3 and TiO2 nanoparticles for better performance in CI engine. Environmental Science and Pollution Research 28 (10):11893–903. doi:10.1007/s11356-020-07926-x.
  • Rajammagari, H. V., and M. W. Mohmad. 2020. The effect of mixed nanoadditive-blended diesel–water emulsion on the performance, combustion, and emission characteristics of a DI diesel engine. Heat Transfer 49 (6):3531–48. doi:10.1002/htj.21786.
  • Rakopoulos, C. D., D. T. Hountalas, T. C. Zannis, and Y. A. Levendis. 2004. Operational and Environmental Evaluation of diesel engines burning oxygen-enriched intake air or oxygen-enriched fuels: A review. SAE Transactions 113:1723–43. http://www.jstor.org/stable/44740884.
  • Ramesh, D. K., J. L. Dhananjaya Kumar, S. G. Hemanth Kumar, V. Namith, P. Basappa Jambagi, and S. Sharath. 2018. Study on effects of Alumina nanoparticles as additive with poultry litter biodiesel on performance, combustion and emission characteristic of diesel engine. Materials Today: Proceedings 5 (1, Part 1):1114–20. doi:10.1016/j.matpr.2017.11.190.
  • Ranjan, A., S. S. Dawn, J. Jayaprabakar, N. Nirmala, K. Saikiran, and S. Sai Sriram. 2018. Experimental investigation on effect of MNMgO nanoparticles on cold flow properties, performance, emission and combustion characteristics of waste cooking oil biodiesel. Fuel 220:780–91. doi:10.1016/j.fuel.2018.02.057.
  • Reyman, D., A. Saiz Bermejo, I. Ramirez Uceda, and M. Rodriguez Gamero. 2014. A new FTIR method to monitor transesterification in biodiesel production by ultrasonication. Environmental Chemistry Letters 12 (1):235–40. doi:10.1007/s10311-013-0440-4.
  • Rodriguez, J. A., and M. Fernández-García. 2007. Synthesis, properties, and applications of oxide nanomaterials. Hoboken, New Jersey, Canada: John Wiley & Sons. https://doi.org/10.1002/9780470108970.
  • Saxena, V., N. Kumar, and V. K. Saxena. 2017. A comprehensive review on combustion and stability aspects of metal nanoparticles and its additive effect on diesel and biodiesel fuelled C.I. engine. Renewable and Sustainable Energy Reviews 70:563–88. doi:10.1016/j.rser.2016.11.067.
  • Seraç, M. R., S. Aydın, and C. Sayın. 2020. Comprehensive evaluation of performance, combustion, and emissions of soybean biodiesel blends and diesel fuel in a power generator diesel engine. Energy Sources, Part A Recovery, Utilization, & Environmental Effects 42 (18):2316–31. doi:10.1080/15567036.2020.1748144.
  • Siatis, N. G., A. C. Kimbaris, C. S. Pappas, P. A. Tarantilis, and M. G. Polissiou. 2006. Improvement of biodiesel production based on the application of ultrasound: Monitoring of the procedure by FTIR spectroscopy. Journal of the American Oil Chemists’ Society 83 (1):53–57. doi:10.1007/s11746-006-1175-1.
  • Soudagar, M. E. M., N.-N. Nik-Ghazali, M. Abul Kalam, I. A. Badruddin, N. R. Banapurmath, and N. Akram. 2018. The effect of nano-additives in diesel-biodiesel fuel blends: A comprehensive review on stability, engine performance and emission characteristics. Energy Conversion and Management 178:146–77. doi:10.1016/j.enconman.2018.10.019.
  • Soukht Saraee, H., S. Jafarmadar, H. Taghavifar, and S. J. Ashrafi. 2015. Reduction of emissions and fuel consumption in a compression ignition engine using nanoparticles. International Journal of Environmental Science and Technology 12 (7):2245–52. doi:10.1007/s13762-015-0759-4.
  • Tosun, E., and M. Özcanlı. 2021. Hydrogen enrichment effects on performance and emission characteristics of a diesel engine operated with diesel-soybean biodiesel blends with nanoparticle addition. Engineering Science and Technology, an International Journal 24 (3):648–54. doi:10.1016/j.jestch.2020.12.022.
  • Tschakert, P., E. Huber-Sannwald, D. S. Ojima, M. R. Raupach, and E. Schienke. 2008. Holistic, adaptive management of the terrestrial carbon cycle at local and regional scales. Global Environmental Change 18 (1):128–41. doi:10.1016/j.gloenvcha.2007.07.001.
  • Ullah, K., H. A. Jan, M. Ahmad, and A. Ullah. 2020. Synthesis and structural characterization of biofuel from Cocklebur sp., using zinc oxide nano-particle: A novel Energy crop for bioenergy industry. Frontiers in Bioengineering and Biotechnology 8. doi:10.3389/fbioe.2020.00756.
  • Vijayakumar, S., S. Mahadevan, P. Arulmozhi, S. Sriram, and P. K. Praseetha. 2018. Green synthesis of zinc oxide nanoparticles using atalantia monophylla leaf extracts: Characterization and antimicrobial analysis. Materials Science in Semiconductor Processing 82:39–45. doi:10.1016/j.mssp.2018.03.017.
  • Yoon, S. H., H. K. Suh, and C. S. Lee. 2009. Effect of spray and EGR rate on the combustion and emission characteristics of biodiesel fuel in a compression ignition engine. Energy & Fuels 23 (3):1486–93. doi:10.1021/ef800949a.
  • Yousefi, A., H. Guo, S. Dev, B. Liko, and S. Lafrance. 2022. Effects of ammonia energy fraction and diesel injection timing on combustion and emissions of an ammonia/diesel dual-fuel engine. Fuel 314:122723. doi:10.1016/j.fuel.2021.122723.
  • Yugandharsai, R., J. Jayaraman, and S. Reddy. 2021. Effects of injection pressure on performance & emission characteristics of CI engine using graphene oxide additive in bio-diesel blend. Materials Today: Proceedings 44:3716–22. doi:10.1016/j.matpr.2020.11.253.
  • Yusuf, A. A., F. L. Inambao, and J. D. Ampah. 2022. Evaluation of biodiesel on speciated PM2.5, organic compound, ultrafine particle and gaseous emissions from a low-speed EPA Tier II marine diesel engine coupled with DPF, DEP and SCR filter at various loads. Energy 239:121837. doi:10.1016/j.energy.2021.121837.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.