38
Views
0
CrossRef citations to date
0
Altmetric
Research Article

An innovative mechanism of creating H1 and H3 pore types in AlSiO4 and its catalytic application to convert waste plastic into aviation fuel

ORCID Icon & ORCID Icon
Pages 12651-12665 | Received 29 Mar 2023, Accepted 23 Oct 2023, Published online: 13 Nov 2023

References

  • Abdul Majid, N., A. A. Abu Hanapah, M. R. Saad, H. Mohd Faizal, A. Che Idris, S. E. Hosseini, H. K, and R. A. R. Mohd. 2021. Non-premixed liquid fuel air flame in a miniature combustor with modified flow aerodynamics. Smart Science 10, 2022 (4):294–300. doi:10.1080/23080477.2021.2015819.
  • Anene, A. F., S. B. Fredriksen, K. A. Sætre, and L. A. Tokheim. 2018. Experimental study of thermal and catalytic pyrolysis of plastic waste components. Sustain 10 (11):1–11. doi:10.3390/su10113979.
  • Cardona, S. C., and A. Corma. 2000. Tertiary recycling of polypropylene by catalytic cracking in a semibatch stirred reactor. Use of spent equilibrium FCC commercial catalyst. Applied Catalysis B: Environmental 25 (2–3):151–62. doi:10.1016/S0926-3373(99)00127-7.
  • Coniwanti, P., I. N. Sakinah, F. Hadiah, F. Unzillah, K. Putri, and R. Muin. 2020. The effect of cracking temperature from a mixture of HDPE and LDPE type plastic waste using Zeolite catalyst on the quality of liquid fuel products the effect of cracking temperature from a mixture of HDPE and LDPE type plastic waste using Zeolite catalys. Journal of Physics Conference Series 1500 (1):012088. doi:10.1088/1742-6596/1500/1/012088.
  • Dennis, P. N. 2014. Physical properties of hydrocarbons and petrochemicals. doi:10.1016/B978-0-323-31301-8.00004-0.
  • Ferna, I., J. Bilbao, D. López-Valerio, I. Fernández, M. J. Azkoiti, M. Olazar, and J. Bilbao. 1997. Transformation of several plastic wastes into fuels by catalytic. Industrial & Engineering Chemistry Research 5885 (97):4523–29. doi:10.1021/ie970096e.
  • Habibie, T. K., B. H. Susanto, M. F. Carli, E. Kusrini, F. H. Juwono, A. Yatim, and E. A. Setiawan. 2018. Effect of NiMo/Zeolite Catalyst Preparation Method for Bio Jet Fuel Synthesis. E3S Web of Conferences 2024:02024–6. doi:10.1051/e3sconf/20186702024.
  • Habyarimana, J. B., M. Njiemon, R. Abdulnasir, M. Neksumi, M. Yahaya, D. Sylvester, I. Joseph, L. Okoro, B. Agboola, O. Uche, et al. 2017. Synthesis of hydrocarbon fuel by thermal catalytic cracking of polypropylene. International Journal of Engineering Research. 8(1):1193–202. doi:10.14299/ijser.2017.01.014.
  • Huang, B., C. H. Bartholomew, and B. F. Woodfield. 2014. Microporous and mesoporous materials improved calculations of pore size distribution for relatively large, irregular slit-shaped mesopore structure. Microporous & Mesoporous Materials: The Official Journal of the International Zeolite Association 184:112–21. doi:10.1016/j.micromeso.2013.10.008.
  • Iadrat, P., N. Horii, T. Atithep, and C. Wattanakit. 2021. Effect of pore connectivity of pore-opened hierarchical MOR zeolites on catalytic behaviors and coke formation in ethanol dehydration. ACS Applied Materials and Interfaces 13 (7):8294–305. doi:10.1021/acsami.0c19780.
  • Kamil, M. S. M., and K. K. Cheralathan. 2020. Facile Synthesis of hydrothermally stable mesoporous ZSM-5 Zeolite from al- SBA-16 via steam assisted crystallization. Journal of Porous Materials 27 (2):587–601. doi:10.1007/s10934-019-00839-2.
  • Karthika Devi, K., and Chellapandiankannan. 2022. Metal ion efect on pore enlargement in solid acid catalyst and CO2 decomposition. Journal of Porous Materials 30 (4):1055–68. doi:10.1007/s10934-022-01399-8.
  • Kim, H., D. Kim, Y. P. J. Jeon, and J.-K. Jeon. 2018. Synthesis of jet fuel through the oligomerization of butenes on zeolite catalysts. Research on Chemical Intermediates 44 (6):3823–33. doi:10.1007/s11164-018-3385-1.
  • Kirgizov, A., G. Valieva, A. Laskin, and A. Lamberov. 2020. Development of gamma-Al2O3 - Zeolite Y/ alpha Al2O3 - HPCM catalyst based on Highly porous - HPCM support for decreasing oil viscosity. Catalysts (MDPI). 10(250). doi:10.3390/catal10020250.
  • Kosari, M., S. M. Kozlov, S. Xi, A. M. Seayad, A. M. Seayad, S. Xi, S. Kozlov, A. Borgna, H. C. Zeng, M. Kosari, et al. 2020. Functional inorganic materials and devices Synthesis of mesoporous copper aluminosilicate hollow spheres for oxidation reactions synthesis of mesoporous copper aluminosilicate hollow spheres for oxi- dation reactions. ACS Applied Materials and Interfaces. 12(20):23060–75. doi:10.1021/acsami.0c03052.
  • Krishnaveni, M., and C. Kannan. 2021. A New mechanism for pore enlargement in mesoporous materials and its application on biodiesel production. Energy sources, part a recover. Utilization and Environmental Effects 1–16. doi:10.1080/15567036.2021.1987587.
  • Kulas, D. G., A. Zolghadr, and D. S. 2021. Micropyrolysis of polyethylene and polypropylene prior to Bioconversion: The effect of reactor temperature and vapor residence time on product distribution. ACS Sustainable Chemistry & Engineering 9 (43):14443–50. doi:10.1021/acssuschemeng.1c04705.
  • Liu, Y., J. Shi, J. Chen, Q. Ye, H. Pan, Z. Shao, and Y. Shi. 2010. Microporous and mesoporous materials dynamic performance of CO 2 adsorption with tetraethylenepentamine-loaded KIT-6. Microporous & Mesoporous Materials: The Official Journal of the International Zeolite Association 134 (1–3):16–21. doi:10.1016/j.micromeso.2010.05.002.
  • Li, Y., X. Zhang, C. Shang, X. Wei, L. Wu, and X. Wang. 2020. Scalable Synthesis of uniform mesoporous aluminosilicate microspheres with controllable size and morphology and high hydrothermal stability for efficient acid Catalysis. doi:10.1021/acsami.0c04998.
  • Łosiewicz, M. 2020. Application of infrared spectrometry in studying Fuels and biofules for aircraft turbine engines. Journal of Konbin 50 (2):107–26. doi:10.2478/jok-2020-0030.
  • Mangesha, V. L., P. Tamizhduraib, P. Santhana Krishnanc, S. Narayanand, S. Umasankarc, S. Padmanabhane, and K. Shanthi. 2020. K. S. c. Green Energy: Hydroprocessing waste polypropylene to produce transport fuel. Journal of Cleaner Production 276:124200. doi:10.1016/j.jclepro.2020.124200.
  • Mangesh, V. L., T. Perumal, S. Subramanian, and S. Padmanabhan. 2020. Clean Energy from plastic: Production of hydroprocessed waste polypropylene pyrolysis oil Utilizing a Ni-Mo/Laponite catalyst. Energy and Fuels 34 (7):8824–36. doi:10.1021/acs.energyfuels.0c01051.
  • Manuscript, A., and A. K. Baranwal. 2018. Child with allergies or allergic reactions. Indian Journal of Pediatrics 85 (1):60–65. doi:10.1039/C8SE00150B.
  • Mlinar, A. N., S. Shylesh, O. C. Ho, and A. T. Bell. 2014. Propene oligomerization using alkali metal- and nickel-exchanged mesoporous aluminosilicate catalysts. ACS Catalysis 4 (1):337–43. doi:10.1021/cs4007809.
  • Nyamori, V. O. 2019. Precursors on the physicochemical, optical, nitrogen-doped reduced graphene oxide.
  • Online, V. A., L. Li, S. Shaikhutdinov, and H. Freund. 2016. Preparation and structure of Fe-containing aluminosilicate thin films †. (1). doi:10.1039/c6cp03460h.
  • Panda, A. K., R. K. Singh, and D. K. Mishra. 2010. Thermolysis of waste plastics to liquid fuel. A suitable method for plastic waste management and manufacture of value added products-A world prospective. Renewable and Sustainable Energy Reviews 14 (1):233–48. doi:10.1016/j.rser.2009.07.005.
  • Pires, A. P. P., Y. Han, J. Kramlich, and M. Garcia-Perez. 2018. Chemical Composition and Fuel Properties of Alternative Jet Fuels. BioResources 13 (2):2632–57. doi:10.15376/biores.13.2.2632-2657.
  • Qian, M., H. Lei, E. Villota, Y. Zhao, E. Huo, C. Wang, W. Mateo, and R. Zou. 2021. Enhanced production of renewable aromatic hydrocarbons for jet-fuel from softwood biomass and plastic waste using hierarchical ZSM-5 modified with lignin-assisted re-assembly. Energy Conversion and Management 236 (December 2020):114020. doi:https://doi.org/10.1016/j.enconman.2021.114020.
  • Rana, B. S., B. Singh, R. Kumar, D. Verma, M. K. Bhunia, A. Bhaumik, and A. K. Sinha. 2010. Hierarchical mesoporous Fe/ZSM-5 with tunable porosity for selective hydroxylation of benzene to phenol. Journal of Materials Chemistry 20 (39):8575–81. doi:10.1039/c0jm01586e.
  • Ren, L., L. Zhu, C. Yang, Y. Chen, Q. Sun, H. Zhang, C. Li, F. Nawaz, X. Meng, and F.-S. Xiao. 2011. Designed copper–amine complex as an efficient template for one-pot synthesis of cu-SSZ-13 zeolite with excellent activity for selective catalytic reduction of NOx by NH3. Chemical Communications 47 (35):9789–91. doi:10.1039/c1cc12469b.
  • Riaz, M., U. Sharafat, N. Zahid, M. Ismail, J. Park, B. Ahmad, N. Rashid, M. Fahim, M. Imran, and A. Tabassum. 2022. Synthesis of biogenic silver nanocatalyst and their antibacterial and organic pollutants reduction ability. ACS Omega 7 (17):14723–34. doi:https://doi.org/10.1021/acsomega.1c07365.
  • Sarker, M., M. M. Rashid, and M. Molla. 2012. Waste polypropylene plastic conversion into liquid hydrocarbon fuel for producing electricity and energies. Environmental Technology (United Kingdom) 33 (24):2709–21. doi:10.1080/09593330.2012.676075.
  • Senthurselvi, C. 2023. ⁎. A novel technique for porous framework cordierite Synthesis at room temperature and its catalytic cracking of waste polypropylene to produce motor oil and petrol. Materials Letters 352:135136–352. doi:10.1016/j.matlet.2023.135136.
  • Shahinuzzaman, M., Z. Yaakob, and Y. Ahmed. 2017. Non-sulphide Zeolite catalyst for bio-jet-fuel conversion. Renewable and Sustainable Energy Reviews 77:1375–84. December 2016. doi:10.1016/j.rser.2017.01.162.
  • Tang, X., Z. Jiang, Z. Li, Z. Gao, Y. Bai, S. Zhao, and J. Feng. 2015. J. Nat. Gas Sci. Eng the effect of the variation in material composition on the heterogeneous pore structure of high-maturity shale of the silurian longmaxi formation in the Southeastern Sichuan Basin, China. Journal of Natural Gas Science & Engineering 23:464–73. doi:10.1016/j.jngse.2015.02.031.
  • Thommes, M., and K. A. Cychosz. 2014. Physical adsorption characterization of nanoporous materials: Progress and challenges. Adsorption 20 (2–3):233–50. doi:10.1007/s10450-014-9606-z.
  • Tomasek, S., Z. Varga, and J. Hancsók. 2020. Production of jet fuel from cracked fractions of waste polypropylene and polyethylene. Fuel Processing Technology 197 (August 2019):106197. doi:10.1016/j.fuproc.2019.106197.
  • Wang, X., H. Li, H. Liu, and X. Hou. 2011. AS-Synthesized mesoporous silica MSU-1 modified with tetraethylenepentamine for CO2 adsorption. Microporous & Mesoporous Materials: The Official Journal of the International Zeolite Association 142 (2–3):564–69. doi:10.1016/j.micromeso.2010.12.047.
  • Wen, J. J., F. N. Gu, F. Wei, Y. Zhou, W. G. Lin, J. Yang, J. Y. Yang, Y. Wang, Z. G. Zou, and J. H. Zhu. 2010. One-Pot Synthesis of the amine-modified meso-structured monolith CO 2 adsorbent. Journal of Materials Chemistry 20 (14):2840–46. doi:10.1039/b920027d.
  • Xiong, F., Z. Jiang, P. Li, X. Wang, H. Bi, Y. Li, Z. Wang, M. A. Amooie, M. R. Soltanian, and J. Moortgat. 2017. Pore structure of transitional Shales in the Ordos Basin, NW China: Effects of composition on Gas storage capacity. Fuel 206:504–15. doi:10.1016/j.fuel.2017.05.083.
  • Yao, B., T. Xiao, O. A. Makgae, X. Jie, S. Gonzalez-Cortes, S. Guan, A. I. Kirkland, J. R. Dilworth, H. A. Al-Megren, S. M. Alshihri, et al. 2020. Transforming carbon dioxide into jet fuel using an organic combustion-synthesized Fe-Mn-K catalyst. Nature Communications 11(1). doi:10.1038/s41467-020-20214-z.
  • Zecchina, A., M. Rivallan, G. Berlier, C. Lamberti, and G. Ricchiardi. 2007. Structure and nuclearity of active sites in Fe-zeolites: Comparison with iron sites in enzymes and homogeneous catalysts. Physical Chemistry Chemical Physics: PCCP 9 (27):3483–99. doi:10.1039/b703445h.
  • Zhang, Y., D. Duan, H. Lei, E. Villota, and R. Ruan. 2019. Jet fuel production from waste plastics via catalytic pyrolysis with activated carbons. Applied Energy 251 (May):113337. doi:10.1016/j.apenergy.2019.113337.
  • Zhang, X., X. Zheng, S. Zhang, B. Zhao, and W. Wu. 2012. AM-TEPA impregnated disordered mesoporous silica as CO2 capture adsorbent for balanced adsorption-desorption properties. Industrial & Engineering Chemistry Research 51 (46):15163–69. doi:10.1021/ie300180u.
  • Zou, R., Z. Zhang, M. F. Yuen, M. Sun, J. Hu, C. Lee, and W. Zhang. 2015. Three-dimensional-networked NiCo 2 S 4 nanosheet array/carbon cloth anodes for high-performance lithium-ion batteries. NPG Asia Materials 7 (6):e195–8. doi:10.1038/am.2015.63.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.