70
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Improving hydrothermal performance of a tubular heat exchanger with different types of twisted tapes using graphene nanoplatelets/water nanofluid

ORCID Icon, & ORCID Icon
Pages 12695-12710 | Received 03 May 2023, Accepted 24 Oct 2023, Published online: 11 Nov 2023

References

  • Aghayari, R., H. Maddah, S. M. Pourkiaei, M. H. Ahmadi, L. Chen, and M. Ghazvini. 2020. Theoretical and experimental studies of heat transfer in a double-pipe heat exchanger equipped with twisted tape and nanofluid. The European Physical Journal Plus 135 (2):1–26. doi:https://doi.org/10.1140/EPJP/S13360-020-00252-8.
  • Assaf, Y. H., A. Akroot, H. A. A. Wahhab, W. Talal, M. Bdaiwi, and M. Y. Nawaf. 2023. Impact of nano additives in heat exchangers with twisted tapes and rings to increase efficiency: A review. Sustainability 15 (10):7867. doi:10.3390/su15107867.
  • Bhattacharyya, S., H. R. B, and A. R. Paul. 2020. The effect of circular hole spring tape on the turbulent heat transfer and entropy analysis in a heat exchanger tube: An experimental study, exp. Experimental Heat Transfer 34 (6):493–512. doi:10.1080/08916152.2020.1787560.
  • Chaurasia, S. R., and R. M. Sarviya. 2020. Thermal performance analysis of CuO/water nanofluid flow in a pipe with single and double strip helical screw tape. Applied Thermal Engineering 166:114631. doi:https://doi.org/10.1016/j.applthermaleng.2019.114631.
  • Durga Prasad, P. V., and A. V. S. S. K. S. Gupta. 2016. Experimental investigation on enhancement of heat transfer using Al2O3/water nanofluid in a u-tube with twisted tape inserts. International Communications in Heat and Mass Transfer 75:154–61. doi:https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2016.03.019.
  • Eiamsa-Ard, S., K. Wongcharee, K. Kunnarak, M. Kumar, and V. Chuwattabakul. 2019. Heat transfer enhancement of TiO2-water nanofluid flow in dimpled tube with twisted tape insert, heat Mass Transf. Und Stoffuebertragung 55 (10):2987–3001. doi:10.1007/S00231-019-02621-1/TABLES/4.
  • Einstein A. 1956. Investigations on the theory of the brownian movement. North Chelmsford: Courier Corporation
  • Goedecke, R., S. Scholl, W. Augustin, S. Scholl, W. Augustin, P. Drögemüller, P. Drögemüller, W. Augustin, S. Scholl, and R. Goedecke. 2016. Experiments on integral and local crystallization fouling resistances in a Double-pipe heat exchanger with wire matrix inserts experiments on integral and local crystallization fouling resistances in a Double-pipe heat exchanger with wire matrix inserts. Heat Transfer Engineering 7632 (1):24–31. doi:10.1080/01457632.2015.1025005.
  • Hamid, K. A., W. H. Azmi, R. Mamat, and K. V. Sharma. 2019. Heat transfer performance of TiO2–SiO2 nanofluids in a tube with wire coil inserts. Applied Thermal Engineering 152:275–86. doi:10.1016/j.applthermaleng.2019.02.083.
  • Incropera, F. P., A. S. Lavine, T. L. Bergman, and D. P. DeWitt. 2011. Fundamentals of heat and mass transfer. Sixth ed. New York: John-Wiley & Sons.
  • Jafaryar, M., M. Sheikholeslami, and Z. Li. 2018. CuO-water nanofluid flow and heat transfer in a heat exchanger tube with twisted tape turbulator. Powder Technology 336:131–43. doi:https://doi.org/10.1016/J.POWTEC.2018.05.057.
  • Kline, J. S., and F. A. McClintock. 1953. Describing uncertainty in single sample experiments, Mech. Eng. 3–8. https://ci.nii.ac.jp/naid/10007206317/.
  • Kumar, A., M. Ashraf, R. Maithani, N. Kumar, S. Sharma, S. Kumar, L. Sharma, R. Thakur, T. Alam, D. Dobrota, et al. 2023. Case studies in thermal Engineering experimental analysis of heat exchanger using perforated conical rings, twisted tape inserts and CuO/H 2 O nanofluids, case stud. Case Studies in Thermal Engineering 49:103255. doi:10.1016/j.csite.2023.103255.
  • Kumar, N., and S. S. Sonawane. 2016. Experimental study of Fe2O3/water and Fe2O3/ethylene glycol nanofluid heat transfer enhancement in a shell and tube heat exchanger, Int. International Communications in Heat and Mass Transfer 78:277–84. doi:https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2016.09.009.
  • Lotfi, R., A. M. Rashidi, and A. Amrollahi. 2012. Experimental study on the heat transfer enhancement of MWNT-water nanofluid in a shell and tube heat exchanger, Int. International Communications in Heat and Mass Transfer 39 (1):108–11. doi:10.1016/J.ICHEATMASSTRANSFER.2011.10.002.
  • Maradiya, C., J. Vadher, and R. Agarwal. 2018. The heat transfer enhancement techniques and their thermal performance factor, Beni-Suef Univ. Beni-Suef University Journal of Basic and Applied Sciences 7 (1):1–21. doi:10.1016/j.bjbas.2017.10.001.
  • Maxwell, J. C. 1873. A treatise on electricity and magnetism. Vol. 1 Oxford: Clarendon Press.
  • Nakhchi, M. E., and J. A. Esfahani. 2018. Cu-water nanofluid flow and heat transfer in a heat exchanger tube equipped with cross-cut twisted tape. Powder Technology 339:985–94. doi:https://doi.org/10.1016/J.POWTEC.2018.08.087.
  • Noorbakhsh, M., S. S. M. Ajarostaghi, M. Zaboli, and B. Kiani. 2022. Thermal analysis of nanofluids flow in a double pipe heat exchanger with twisted tapes insert in both sides. Journal of Thermal Analysis and Calorimetry 147 (5):3965–76. doi:10.1007/S10973-021-10738-X/FIGURES/11.
  • Olabi, A. G., T. Wilberforce, E. T. Sayed, K. Elsaid, S. M. A. Rahman, and M. A. Abdelkareem. 2021. Geometrical effect coupled with nanofluid on heat transfer enhancement in heat exchangers. International Journal of Thermofluids 10:100072. doi:https://doi.org/10.1016/J.IJFT.2021.100072.
  • Pak, B. C., and Y. I. Cho. 2007. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, exp. Experimental Heat Transfer 11 (2):151–70. doi:10.1080/08916159808946559.
  • Patel, B. V., R. M. Sarviya, and S. P. S. Rajput. 2022. Experimental study of thermal characteristics of alternatively twisted swirl generator tape in a heat exchanger tube, energy sources, part a recover. Energy Sources, Part a Recovery, Utilization, & Environmental Effects 44 (4):9603–19. doi:https://doi.org/10.1080/15567036.2022.2134520.
  • Ranjbarzadeh, R., A. H. Meghdadi Isfahani, and M. Hojaji. 2018. Experimental investigation of heat transfer and friction coefficient of the water/graphene oxide nanofluid in a pipe containing twisted tape inserts under air cross-flow, exp. Experimental Heat Transfer 31 (5):373–90. doi:https://doi.org/10.1080/08916152.2018.1431736.
  • Sajid, M. U., and H. M. Ali. 2019. Recent advances in application of nanofluids in heat transfer devices: A critical review, renew. Sustain. Renewable and Sustainable Energy Reviews 103:556–92. doi:https://doi.org/10.1016/j.rser.2018.12.057.
  • Sarsam, W. S., A. Amiri, S. N. Kazi, and A. Badarudin. 2016. Stability and thermophysical properties of non-covalently functionalized graphene nanoplatelets nanofluids, energy convers. Energy Conversion and Management 116:101–11. doi:https://doi.org/10.1016/J.ENCONMAN.2016.02.082.
  • Shah, R. K., and D. P. Sekulic. 2003. Fundamentals of heat exchanger design. New York: John Wiley & Sons.
  • Sundar, L. S. 2023. Heat transfer, friction factor and exergy efficiency analysis of nanodiamond-Fe 3 O 4/water hybrid nanofluids in a tube with twisted tape inserts. Ain Shams Engineering Journal 14 (9):102068. doi:https://doi.org/10.1016/j.asej.2022.102068.
  • Webb, R. L. 1981. Performance evaluation criteria for use of enhanced heat transfer surfaces in heat exchanger design. International Journal of Heat and Mass Transfer 24 (4):715–26. doi:https://doi.org/10.1016/0017-9310(81)90015-6.
  • Zolfalizadeh, M., S. Zeinali Heris, H. Pourpasha, M. Mohammadpourfard, and J. P. Meyer. 2023. Experimental investigation of the effect of graphene/water nanofluid on the heat transfer of a shell-and-tube heat exchanger. International Journal of Energy Research 2023:1–16. doi:10.1155/2023/3477673.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.