146
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Experimental investigation of wind turbine stress and power characteristics under dynamic changes in wind direction

, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1925-1943 | Received 17 Oct 2023, Accepted 02 Jan 2024, Published online: 21 Jan 2024

References

  • Ali, Q. S., and M.-H. Kim. 2020. Unsteady aerodynamic performance analysis of an airborne wind turbine under load varying conditions at high altitude. Energy Conversion and Management 210:112696. doi:10.1016/j.enconman.2020.112696.
  • Amponsah, W., E. Wu, Z. Feng, Q. Wang, and Z. Kwame Mantey. 2022. Analysis of crack propagation in onshore wind turbine foundations using the double-K fracture model. Structures 41:925–42. doi:10.1016/j.istruc.2022.04.070.
  • Bissing, H., M. Knobloch, and M. Rauch. 2022. Advanced fatigue assessment - the future of wind turbine towers. Procedia Structural Integrity 38:372–81. doi:10.1016/j.prostr.2022.03.038.
  • Bosnar, D., H. Kozmar, S. Pospisil, and M. Machacek. 2021. Thrust force and base bending moment acting on a horizontal axis wind turbine with a high tip speed ratio at high yaw angles. Wind Struct 1 (5):32.
  • Castellani, F., D. Astolfi, F. Natili, and F. Mari. 2019. The yawing behavior of horizontal-axis wind turbines: A numerical and experimental analysis. Machines 7 (1):15. doi:10.3390/machines7010015.
  • Chen, J., Z. Liu, Y. Song, Y. Peng, and J. Li. 2022. Experimental study on dynamic responses of a spar-type floating offshore wind turbine. Renew Energy 196:560–78. doi:10.1016/j.renene.2022.06.149.
  • Choudhry, A., M. Arjomandi, and R. Kelso. 2013. Horizontal axis wind turbine dynamic stall predictions based on wind speed and direction variability. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 227 (3):338–51. doi:10.1177/0957650912470941.
  • Dai, J., T. He, M. Li, and X. Long. 2021a. Performance study of multi-source driving yaw system for aiding yaw control of wind turbines. Renewable Energy 163:154–71. doi:10.1016/j.renene.2020.08.065.
  • Dai, J., X. Yang, W. Hu, L. Wen, and Y. Tan. 2018. Effect investigation of yaw on wind turbine performance based on SCADA data. Energy 149:684–96. doi:10.1016/j.energy.2018.02.059.
  • Dai, J., T. He, M. Li, and X. Long. 2021b. Performance study of multi-source driving yaw system for aiding yaw control of wind turbines. Renewable Energy 163:154–71. doi:10.1016/j.renene.2020.08.065.
  • Dose, B., H. Rahimi, B. Stoevesandt, and J. Peinke. 2020. Fluid-structure coupled investigations of the NREL 5 MW wind turbine for two downwind configurations. Renewable Energy 146:1113–23. doi:10.1016/j.renene.2019.06.110.
  • Dou, B., T. Qu, L. Lei, and P. Zeng. 2020. Optimization of wind turbine yaw angles in a wind farm using a three-dimensional yawed wake model. Energy 209:118415. doi:10.1016/j.energy.2020.118415.
  • Elsherif, A. A., and M. H. Abdellatif. 2019. Factors affecting stress distribution in wind turbine blade. IOP Conference Series: Materials Science & Engineering 610 (1):12020. doi:10.1088/1757-899X/610/1/012020.
  • Gao, Q., S. Liu, J. Fan, and Z. Shen. 2019. Wind-induced fatigue analysis of wind turbine steel tower. IOP Conference Series: Earth and Environmental Science 310 (3):32007. doi:10.1088/1755-1315/310/3/032007.
  • Grieve, N., A. M. Kazemi Amiri, and W. E. Leithead. 2022. A straightforward approach to site-wide assessment of wind turbine tower lifetime extension potential. Energies 15 (9):3380. doi:10.3390/en15093380.
  • Guo, P., S. Chen, J. Chu, and D. Infield. 2020. Wind direction fluctuation analysis for wind turbines. Renewable Energy 162:1026–35. doi:10.1016/j.renene.2020.07.137.
  • Guo, T., X. Guo, Z. Gao, S. Li, X. Zheng, X. Gao, R. Li, T. Wang, Y. Li, D. Li, et al. 2021. Nacelle and tower effect on a stand-alone wind turbine energy output—A discussion on field measurements of a small wind turbine. Applied Energy 303:117590. doi:10.1016/j.apenergy.2021.117590.
  • Jin, S., H. Dong, J. Chen, X. Xie, and M. Guo. 2022. Study on accelerated life tests for main shaft bearings in wind turbines. Journal of Mechanical Science and Technology 36 (3):1197–207. doi:10.1007/s12206-022-0116-8.
  • Ke, S., W. Yu, T. Wang, and Y. Ge. 2019. Aerodynamic performance and wind-induced effect of large-scale wind turbine system under yaw and wind-rain combination action. Renewable Energy 136:235–53. doi:10.1016/j.renene.2018.12.123.
  • Martinelli, P., L. Flessati, B. Dal Lago, G. Fraraccio, C. di Prisco, and M. di Prisco. 2022. Role of numerical modelling choices on the structural response of onshore wind turbine shallow foundations. Structures 37:442–58. doi:10.1016/j.istruc.2022.01.002.
  • Mohammadi, E., R. Fadaeinedjad, and H. R. Naji. 2018. Using a new wind turbine emulator to analyze tower shadow and yaw error effects. Energy Conversion and Management 174:378–87. doi:10.1016/j.enconman.2018.08.049.
  • Palanimuthu, G. Mayilsamy, A. Basheer, S.-R. Lee, D. Song, and Y. Joo. 2022. A review of recent aerodynamic power extraction challenges in coordinated pitch, Yaw, and torque control of large-scale wind turbine systems. Energies (Basel) 15 (21):8161. doi:10.3390/en15218161.
  • Qu, C., Z. Lin, P. Chen, J. Liu, Z. Chen, and Z. Xie. 2022. An improved data-driven methodology and field-test verification of yaw misalignment calibration on wind turbines. Energy Conversion and Management 266:115786. doi:10.1016/j.enconman.2022.115786.
  • Regodeseves, P. G., and C. S. Morros. 2021. Numerical study on the aerodynamics of an experimental wind turbine: Influence of nacelle and tower on the blades and near-wake. Energy Conversion and Management 237:114110. doi:10.1016/j.enconman.2021.114110.
  • Santo, G., M. Peeters, W. Van Paepegem, and J. Degroote. 2020. Effect of rotor–tower interaction, tilt angle, and yaw misalignment on the aeroelasticity of a large horizontal axis wind turbine with composite blades. Wind Energy 23 (7):1578–95. doi:10.1002/we.2501.
  • Solomin, E. V., A. A. Terekhin, A. S. Martyanov, A. N. Shishkov, A. A. Kovalyov, D. R. Ismagilov, and G. N. Ryavkin. 2022. Horizontal axis wind turbine yaw differential error reduction approach. Energy Conversion and Management 254:115255. doi:10.1016/j.enconman.2022.115255.
  • Song, Z. Li, X. Deng, M. Dong, L. Huang, J. Yang, M. Su, and Y. Joo. 2023. Deep optimization of model predictive control performance for wind turbine yaw system based on intelligent fuzzy deduction. Expert Systems with Applications 221:119705. doi:10.1016/j.eswa.2023.119705.
  • Tian, K., L. Song, Y. Chen, X. Jiao, R. Feng, and R. Tian. 2022. Stress coupling analysis and failure damage evaluation of wind turbine blades during strong winds. Energies 15 (4):1339. doi:10.3390/en15041339.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.