83
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Optimization of performance and emission characteristics of liquid fuel fired porous medium burner using RSM and desirability approach

ORCID Icon, ORCID Icon & ORCID Icon
Pages 3082-3096 | Received 16 Oct 2023, Accepted 24 Jan 2024, Published online: 11 Feb 2024

References

  • Altemimi, A., D. A. Lightfoot, M. Kinsel, and D. G. Watson. 2015. Employing response surface methodology for the optimization of ultrasound assisted extraction of lutein and β-carotene from spinach. Molecules 20 (4):6611–25. doi:10.3390/molecules20046611.
  • Arini Putri, T., L. Fauziah, and L. Fauziah. 2017. Performance evaluation of a pressurized cooking stove using vegetable cooking oils as fuel. International Journal on Advanced Science, Engineering and Information Technology 7 (4):1255–61. doi:10.18517/ijaseit.7.4.2430.
  • Avdic, F., M. Adzic, and F. Durst. 2010. Small scale porous medium combustion system for heat production in households. Applied Energy 87 (7):2148–55. doi:10.1016/j.apenergy.2009.11.010.
  • Baadhe, R. R., N. K. Mekala, S. R. Parcha, and Y. P. Devi. 2013. Optimization of amorphadiene production in engineered yeast by response surface methodology. 3 Biotech 4 (3):317–24. doi:10.1007/s13205-013-0156-y.
  • Banerjee, A., and D. Paul. 2021. Developments and applications of porous medium combustion: A recent review. Energy 221:119868. doi:10.1016/j.energy.2021.119868.
  • Chong, W., R. Othman, R. P. Jaya, M. Rosli, M. Hasan, M. Nabiałek, B. Jeż, P. Pietrusiewicz, D. Kwiatkowski, P. Postawa, et al. 2021. Design of experiment on concrete mechanical properties prediction: A critical review. Materials (Basel) 14 (8):1–17. doi:10.3390/ma14081866.
  • Couto, H. S., J. A. Carvalho Jr, and D. Bastos Netto. 1997. Theoretical formulation for sauter mean diameter of pressure-swirl atomizers. Journal of Propulsion & Power 13 (5):691–96. doi:10.2514/2.5221.
  • Deb, S., L. K. Kaushik, M. A. Kumar, S. H. V. Satish, and P. Muthukumar. 2021. Clustered porous radiant Burner: A cleaner alternative for cooking systems in small and medium scale applications. Journal of Cleaner Production 308:127276. Jul. doi:10.1016/j.jclepro.2021.127276.
  • Devi, S., N. Sahoo, and P. Muthukumar. 2023. Comparative performance evaluation of a porous burner with a conventional burner: Biogas combustion. Applied Thermal Engineering 218:119338. doi:10.1016/j.applthermaleng.2022.119338.
  • Elkotb, M. M. 1982. Fuel Atomization for Spray Modelling. Progress in Energy and Combustion Science 8 (1):61–91. doi:10.1016/0360-1285(82)90009-0.
  • Falsafi, I., H. Nemati, and A. Zare. 2023. Mathematical modeling of porous combustion under various working conditions. Chemical Engineering Communications 210 (6):920–32. doi:10.1080/00986445.2021.1986702.
  • Heister, S. D. 2011. Handbook of atomization and sprays. Handb. At. Sprays. doi:10.1007/978-1-4419-7264-4.
  • Hui, L., K. Liusheng, Y. Zhi, Y. Xiaoxi, and W. Duo. 2020. Investigation of flame characteristic in porous media burner with pores step distribution in radial direction. Combustion Theory and Modelling 24 (4):666–81. doi:10.1080/13647830.2020.1739335.
  • Indian Standard. 2018. Oil pressure stoves-offset burner type-specification (second revision), IS10109:2018. New Delhi, India: BIS.
  • Ismail, N. C., M. Z. Abdullah, N. M. Mazlan, and K. F. Mustafa. 2020. Entropy generation and exergy analysis of premixed fuel-air combustion in micro porous media burner. Entropy 22(10):1–18. doi:10.3390/e22101104.
  • Jasuja, A. K. 1979. Atomization of Crude and Residual Fuel Oils. Journal of Engineering for Power 101 (2):250–58. doi:10.1115/1.3446480.
  • Jugjai, S., and C. Pongsai. 2007. Liquid fuels-fired porous burner. Combustion Science and Technology 179(9):1823–40. doi:10.1080/00102200701260179.
  • Kaplan, M., and M. J. Hall. 1995. The combustion of liquid fuels within a porous media radiant burner. Experimental Thermal & Fluid Science 11 (1):13–20. doi:10.1016/0894-1777(94)00106-I.
  • Kaushik, L. K., and P. Muthukumar. 2020. Thermal and economic performance assessments of waste cooking oil/kerosene blend operated pressure cook-stove with porous radiant burner. Energy 206(118102):118102. doi:10.1016/j.energy.2020.118102.
  • Kline, S., and F. McClintock. 1953. Describing uncertainties in single sample experiments. Mechanical Engineering 75 (3):8.
  • Lefebvre, A. H. 1989. Properties of sprays. Particle & Particle Systems Characterization 6 (1–4):176–86. doi:10.1002/ppsc.19890060129.
  • Liu, L., H. Liu, M. Xie, and X. Liu. 2019. Experimental characterization of diesel combustion in an electrically pre-heated porous media burner. Energy & Fuels 33 (12):12749–57. doi:10.1021/acs.energyfuels.9b02812.
  • Li, S., G. Wu, P. Wang, Y. Cui, C. Tian, and H. Han. 2021. A mathematical model for predicting the sauter mean diameter of liquid-medium ultrasonic atomizing nozzle based on orthogonal design. Applied Science 11 (11628):11628. doi:10.3390/app112411628.
  • Malico, I., M. A. Mujeebu, I. Malico, and M. A. Mujeebu. 2015. Potential of porous media combustion technology for household applications. International Journal of Advanced Thermofluid Research 1 (1):2455–1368.
  • Mohamad, A. A. 2005. 11-combustion in porous media:Fundamentals and applications. In Transport phenomena in porous media III, Pergamon, ed. D. B. Ingham and I. Pop, ISBN 9780080444901 287–304. doi:10.1016/B978-008044490-1/50015-6.
  • Mujeebu, M. A., M. Z. Abdullah, M. Z. A. Bakar, A. A. Mohamad, and M. K. Abdullah. 2009. Applications of porous media combustion technology – a review. Applied Energy 86 (9):1365–75. doi:10.1016/j.apenergy.2009.01.017.
  • Muthukumar, P., and P. I. Shyamkumar. 2013. Development of novel porous radiant burners for LPG cooking applications. Fuel 112:562–66. doi:10.1016/j.fuel.2011.09.006.
  • Nahemiah, D., I. Nkama, and M. H. Badau. 2016. Application of response surface methodology (RSM) for the production and optimization of extruded instant porridge from broken rice fractions blended with Cowpea. International Journal of Nutrition and Food Sciences 5 (2):105–16. doi:10.11648/j.ijnfs.20160502.13.
  • Palanisamy, M., L. K. Kaushik, A. K. Mahalingam, S. Deb, P. Maurya, S. R. Shaik, and M. A. Mujeebu. 2023. Evolutions in Gaseous and Liquid Fuel Cook-Stove Technologies. Energies 16 (2):763. doi:10.3390/en16020763.
  • Pan, P., W. Jin, X. Li, Y. Chen, J. Jiang, H. Wan, and D. Yu. 2018. Optimization of multiplex quantitative polymerase chain reaction based on response surface methodology and an artificial neural network-genetic algorithm approach. PLoS One 13 (7):1–14. doi:10.1371/journal.pone.0200962.
  • Peasura, P. 2015. Application of response surface methodology for modeling of postweld heat treatment process in a pressure vessel steel ASTM A516 grade 70. Scientific World Journal 2015:1–8. doi:10.1155/2015/318475.
  • Pradhan, P., and P. C. Mishra. 2018. Performance evaluation of novel surface flame self-aspirated porous radiant burners for cooking applications. Sādhanā 123456789 (x). doi: 10.1007/s12046-018-0934-7.
  • Pradhan, P., C. Mishra, and B. B. Samantaray. 2018. Performance and emission analysis of a novel porous radiant burner for domestic cooking application. Heat Transfer Engineering 39(9):784–93. doi:10.1080/01457632.2017.1341231.
  • Ronceros, J. R., A. Porto, J. Sumara, and G. A. Ronceros. 2022. An improved theoretical formulation for Sauter mean diameter of pressure-swirl atomizers using geometrical parameters of atomization. Propulsion & Power Research 11 (2):240–52. doi:10.1016/j.jppr.2022.02.007.
  • Sagar Sinha, G., and P. Muthukumar. 2019, Aug. Study of effects of various parameter on thermal efficiency of porous burner with kerosene pressure stove. Journal of Physics: Conference Series 1240(1):012136. doi:10.1088/1742-6596/1240/1/012136.
  • Shah, P. R., and A. Ganesh. 2017. Study the in fl uence of pre-heating on atomization of straight vegetable oil through ohnesorge number and Sauter mean diameter. Journal of the Energy Institute 1–7. doi:10.1016/j.joei.2017.10.006.
  • Sharma, M., and S. C. Mishra. 2009. Thermal efficiency study of conventional kerosene pressure stoves equipped with porous radiant inserts. International Energy Journal 10:247–54.
  • Sharma, M., S. C. Mishra, and P. Mahanta. 2011. An experimental investigation on efficiency improvement of a conventional kerosene pressure stove. International Journal of Energy for a Clean Environment 12 (1):79–93. doi:10.1615/InterJEnerCleanEnv.2012005580.
  • Sharma, M., S. C. Mishra, and P. Mahanta. 2016. Effect of burner configuration and operating parameters on the performance of kerosene pressure stove with submerged porous medium combustion. Applied Thermal Engineering 107:516–23. doi:10.1016/j.applthermaleng.2016.07.016.
  • Sharma, L., S. S. Sehgal, R. Tonk, and S. Chhabra. 2021. Combustion analysis of porous radiant burner for commercial cooking applications. IOP Conference Series: Materials Science & Engineering 1017 (1):1017. doi:10.1088/1757-899X/1017/1/012023.
  • Singh, H., A. Sharma, M. Kumar, V. Anand, V. Nhanh Nguyen, N. Kumar Singh, Y. Singh, D. Balasubramanian, B. Deepanraj, and T. Hai Truong. 2023. Enhancement of combustion characteristics of waste cooking oil biodiesel using TiO 2 nanofluid blends through RSM. Fuel 331 (1):125681. doi:10.1016/j.fuel.2022.125681.
  • Singh, D. K., and J. V. Tirkey. 2022. Performance optimization through response surface methodology of an integrated coal gasi fi cation and CI engine fuelled with diesel and low-grade coal-based producer gas. Energy 238:121982. doi:10.1016/j.energy.2021.121982.
  • Subhaschandra, T., U. Rajak, O. David, P. K. Chaurasiya, K. Natarajan, T. N. Verma, and P. Nashine. 2021. Optimization of performance and emission parameters of direct injection diesel engine fuelled with microalgae Spirulina (L .) – response surface methodology and full factorial method approach. Fuel 285 (January):119103. doi:10.1016/j.fuel.2020.119103.
  • Takami, H., S. Tomohiro, Y. Itaya, and M. Hasatani. 1998. Performance of flammability of kerosene and NOX emission in the porous burner. Fuel 77 (3):165–71. doi:10.1016/S0016-2361(97)00180-4.
  • Tongbai, P., K. Keawchart, and B. Krittacom. 2021. Spherical packed-bed porous burner using diesel oil as fuel. Energy Reports 7 (May):1–11. doi:10.1016/j.egyr.2021.09.053.
  • Tseng, C., and J. R. Howell. 1996. Combustion of Liquid Fuels in a Porous Radiant Burner. Combustion Science and Technology 112 (January):141–61. doi:10.1080/00102209608951953.
  • Vahidhosseini, S. M., J. A. Esfahani, and K. C. Kim. 2021. Assessment of a cylindrical porous radiant burner with internal combustion regime for sustainable energy: Numerical analysis of the radiant efficiency and NO production. Sustainable Energy Technologies and Assessments 43:100974. Feb. doi:10.1016/j.seta.2020.100974.
  • Vera, L., M. M. De Zan, M. S. Cámara, and C. Goicoechea. 2014. Talanta experimental design and multiple response optimization. Using the desirability function in analytical methods development. Talanta 124:123–38. doi:10.1016/j.talanta.2014.01.034.
  • Voinea, A., S. Stroe, and G. Gabriela. 2020. Use of response surface methodology to investigate the effects of sodium chloride substitution with potassium chloride on Dough’s rheological properties. Applied Science 10 (4039):1–13. doi:10.3390/app10114039.
  • Waseem, M., B. Salah, T. Habib, W. Saleem, M. Abas, R. Khan, U. Ghani, and M. U. R. Siddiqi. 2020. Multi-response optimization of tensile creep behavior of PLA 3D printed parts using categorical response surface methodology. Polymers (Basel) 2962 (12):2962. doi:10.3390/polym12122962.
  • Wei, X., and H. Yong. 2014. Improved semiempirical correlation to predict Sauter mean diameter for pressure-swirl atomizers. Journal of Propulsion & Power 30 (6):1628–35. doi:10.2514/1.B35238.
  • Yirgu, Z., S. Leta, A. Hussen, M. Mazharuddin, and T. Aragaw. 2021. Heliyon optimization of microwave-assisted carbohydrate extraction from indigenous Scenedesmus sp. grown in brewery ef fl uent using response surface methodology. Heliyon 7 (5):e07115. doi:10.1016/j.heliyon.2021.e07115.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.