20
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Feasibility analysis and performance characteristic investigation of thermal energy storage system based on organic Rankine cycle for engine exhaust temperature modulation

, ORCID Icon, , &
Pages 53-74 | Received 16 Jan 2024, Accepted 16 Jun 2024, Published online: 27 Jun 2024

References

  • Ampah, J. D., X. Liu, X. Sun, X. Pan, L. Xu, C. Jin, T. Sun, Z. Geng, S. Afrane, and H. Liu. 2022. Study on characteristics of marine heavy fuel oil and low carbon alcohol blended fuels at different temperatures. Fuel 310 (122307):122307. doi:10.1016/j.fuel.2021.122307.
  • Andreoli, S., F. A. Deorsola, and R. Pirone. 2015. MnOx-CeO2 catalysts are synthesized by solution combustion synthesis for the low-temperature NH3-SCR. Catalysis Today 253:199–206. doi:10.1016/j.cattod.2015.03.036.
  • Bao, H., Z. Ma, and A. P. Roskilly. 2016. Integrated chemisorption cycles for ultra-low grade heat recovery and thermo-electric energy storage and exploitation. Applied Energy 164:228–36. doi:10.1016/j.apenergy.2015.11.052.
  • Bari, S., and S. N. Hossain. 2013. Waste heat recovery from a diesel engine using shell and tube heat exchanger. Applied Thermal Engineering 61 (2):355–63. doi:10.1016/j.applthermaleng.2013.08.020.
  • Bari, S., and S. N. Hossain. 2014. Design and optimization of compact heat exchangers to be retrofitted into a vehicle for heat recovery from a diesel engine. The 6th BSME International Conference on Thermal Engineering, vol. 105, 2015, 472–79, Dhaka, BANGLADESH.
  • Camposeco, R., S. Castillo, V. Mugica, I. Mejia-Centeno, and J. Marin. 2014. Role of V2O5–WO3/H2Ti3O7-nanotube-model catalysts in the enhancement of the catalytic activity for the SCR-NH3 process. Chemical Engineering Journal 242:313–20. doi:10.1016/j.cej.2014.01.002.
  • Daniel, C. J., R. Koganti, and A. Mariadhas. 2020. Waste heat recovery through cascaded thermal energy storage system from a diesel engine exhaust gas. International Journal of Ambient Energy 43 (1):2701–09. doi:10.1080/01430750.2020.1768896.
  • Deng, X., L. Xing, H. Yin, F. Tian, and Q. Zhang. 2018. Numerical investigation of fuel distribution effect on flow and temperature field in a heavy duty gas turbine combustor. International Journal of Turbo & Jet-Engines 35 (1):71–80. doi:10.1515/tjj-2016-0021.
  • Hamedi, M. R., O. Doustdar, A. Tsolakis, and J. Hartland. 2021. Energy-efficient heating strategies of diesel oxidation catalyst for low emissions vehicles. Energy 230 (120819):120819. doi:10.1016/j.energy.2021.120819.
  • Hatami, M., D. D. Ganji, and M. Gorji-Bandpy. 2014. A review of different heat exchangers designs for increasing the diesel exhaust waste heat recovery. Renewable & Sustainable Energy Reviews 37:168–81. doi:10.1016/j.rser.2014.05.004.
  • Hatami, M., D. D. Ganji, and M. Gorji-Bandpy. 2015. Experimental investigations of diesel exhaust exergy recovery using delta winglet vortex generator heat exchanger. International Journal Thermal Science 93:52–63. doi:10.1016/j.ijthermalsci.2015.02.004.
  • Ji, L., Y. Cai, Y. Shi, R. Fan, W. Wang, and Y. Chen. 2020. Effects of nonthermal plasma on microstructure and oxidation characteristics of particulate matter. Environmental Science & Technology 54 (4):2510–19. doi:10.1021/acs.est.9b06177.
  • Johar, D. K., D. Sharma, S. L. Soni, P. K. Gupta, and R. Goyal. 2016. Experimental investigation on latent heat thermal energy storage system for stationary C.I. engine exhaust. Applied Thermal Engineering 104:64–73. doi:10.1016/j.applthermaleng.2016.05.060.
  • Kaltakkiran, G., and M. A. Ceviz. 2021. The performance improvement of direct injection engines in cold start conditions integrating with phase change material: Energy and exergy analysis. Journal of Energy Storage 42 (102895):102895. doi:10.1016/j.est.2021.102895.
  • Kauranen, P., T. Elonen, L. Wikstrom, J. Heikkinen, and J. Laurikko. 2010. Temperature optimisation of a diesel engine using exhaust gas heat recovery and thermal energy storage (diesel engine with thermal energy storage). Applied Thermal Engineering 30 (6–7):631–38. doi:10.1016/j.applthermaleng.2009.11.008.
  • Khalid, A. 2014. Effects of biodiesel derived by waste cooking oil on fuel consumption and performance of diesel engine. World Virtual Conference on Advanced Research in Mechanical and Materials Engineering, vol. 554, 520, Kuala Lumpur, MALAYSIA.
  • Kim, Y.-D., W.-S. Kim, and Y. Lee. 2015. Influences of exhaust gas temperature and flow rate on optimal catalyst activity profiles. International Journal of Heat and Mass Transfer 85:841–51. doi:10.1016/j.ijheatmasstransfer.2015.02.043.
  • Kompan, T. A., V. I. Kulagin, V. V. Vlasova, S. V. Kondratiev, A. Y. Lukin, and N. F. Pukhov. 2020. State primary standard of unit of specific heat capacity of solids (Get 60-2019). Measurement Technology 63 (6):407–13. doi:10.1007/s11018-020-01802-3.
  • Kumar, G., S.-H. Kim, C.-H. Lay, and V. K. Ponnusamy. 2020. Recent developments on alternative fuels, energy and environment for sustainability Preface. Bioresource Technology 317 (124010):124010. doi:10.1016/j.biortech.2020.124010.
  • Lecompte, S., H. Huisseune, M. van den Broek, B. Vanslambrouck, and M. De Paepe. 2015. Review of Organic Rankine Cycle (ORC) architectures for waste heat recovery. Renewable and Sustainable Energy Reviews 47:448–61. doi:10.1016/j.rser.2015.03.089.
  • Li, Y., M. Jia, Y. Chang, S. L. Kokjohn, and R. D. Reitz. 2016. Thermodynamic energy and exergy analysis of three different engine combustion regimes. Applied Energy 180:849–58. doi:10.1016/j.apenergy.2016.08.038.
  • Liu, Q., T. Guo, J. Fu, H. Dai, and J. Liu. 2022. Experimental study on the effects of injection parameters and exhaust gas recirculation on combustion, emission and performance of Atkinson cycle gasoline direct-injection engine. Energy 238 (121784):121784. doi:10.1016/j.energy.2021.121784.
  • Manigrasso, A., N. Fouchal, P. Darcy, and P. Da Costa. 2012. Hysteresis effect study on diesel oxidation catalyst for a better efficiency of SCR systems. Catalysis Today 191 (1):52–58. doi:10.1016/j.cattod.2012.01.017.
  • Moldgy, A., and R. Parameshwaran. 2016. Study on thermal energy storage properties of organic phase change material for waste heat recovery applications. International conference on Advanced Materials (SCICON), vol. 5, 2018, pp. 16840–48, Coimbatore, INDIA.
  • More, P. M., D. L. Nguyen, P. Granger, C. Dujardin, M. K. Dongare, and S. B. Umbarkar. 2015. Activation by pretreatment of Ag–Au/Al2O3 bimetallic catalyst to improve low temperature HC-SCR of NOx for lean burn engine exhaust. Applied Catalysis B: Environmental 174-175:145–56. doi:10.1016/j.apcatb.2015.02.035.
  • Pandiyarajan, V., M. C. Pandian, E. Malan, R. Velraj, and R. V. Seeniraj. 2011. Experimental investigation on heat recovery from diesel engine exhaust using finned shell and tube heat exchanger and thermal storage system. Applied Energy 88 (1):77–87. doi:10.1016/j.apenergy.2010.07.023.
  • Ravi, R., S. Pachamuthu, and P. Kasinathan. 2020. Computational and experimental investigation on effective utilization of waste heat from diesel engine exhaust using a fin protracted heat exchanger. Energy 200 (117489):117489. doi:10.1016/j.energy.2020.117489.
  • Rijpkema, J., O. Erlandsson, S. B. Andersson, and K. Munch. 2022. Exhaust waste heat recovery from a heavy-duty truck engine: Experiments and simulations. Energy 238 (121698):121698. doi:10.1016/j.energy.2021.121698.
  • Vedagiri, P., L. J. Martin, E. G. Varuvel, and T. Subramanian. 2020. Experimental study on NOxreduction in a grapeseed oil biodiesel-fueled CI engine using nanoemulsions and SCR retrofitment. Environmental Science and Pollution Research 27 (24):29703–16. doi:10.1007/s11356-019-06097-8.
  • Verschaeren, R., and S. Verhelst. 2018. Increasing exhaust temperature to enable after-treatment operation on a two-stage turbo-charged medium speed marine diesel engine. Energy 147:681–87. doi:10.1016/j.energy.2018.01.081.
  • Wang, Y. C., and G. H. Tang. 2016. Prediction of sulfuric acid dew point temperature on heat transfer fin surface. Applied Thermal Engineering 98:492–501. doi:10.1016/j.applthermaleng.2015.12.078.
  • Yu, X., Z. Li, Y. Lu, R. Huang, and A. P. Roskilly. 2019. Investigation of organic rankine cycle integrated with double latent thermal energy storage for engine waste heat recovery. Energy 170:1098–112. doi:10.1016/j.energy.2018.12.196.
  • Zegenhagen, M. T., and F. Ziegler. 2015. Feasibility analysis of an exhaust gas waste heat driven jet-ejector cooling system for charge air cooling of turbocharged gasoline engines. Applied Energy 160:221–30. doi:10.1016/j.apenergy.2015.09.057.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.