0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Preparation of glass-ceramics via co-sintering of coal fly ash and metastable slag

, , , , , , , & show all
Pages 9993-10004 | Received 20 Dec 2023, Accepted 14 Jul 2024, Published online: 25 Jul 2024

References

  • Bernardo, E., G. Scarinci, E. Edme, U. Michon, and N. Planty. 2009. Fast-sintered gehlenite glass–ceramics from plasma-vitrified municipal solid waste incinerator fly ashes. Journal of the American Ceramic Society 92 (2):528–30. doi:10.1111/j.1551-2916.2008.02892.x.
  • Cheng, T. W., C. Tu, M. S. Ko, and T. H. Ueng. 2011. Production of glass–ceramics from incinerator ash using lab-scale and pilot-scale thermal plasma systems. Ceramics International 37 (7):2437–44. doi:10.1016/j.ceramint.2011.05.088.
  • Deng, Y., B. Gong, Y. Chao, T. Dong, W. Yang, M. Hong, X. Shi, G. Wang, Y. Jin, Z.-G. Chen, et al. 2018. Sustainable utilization of municipal solid waste incineration fly ash for ceramic bricks with eco-friendly biosafety. Materials Today Sustainability 1-2:32–38. doi:10.1016/j.mtsust.2018.11.002.
  • Erol, M., S. Kucukbayrak, and A. Ersoy-Mericboyu. 2008. Comparison of the properties of glass, glass-ceramic and ceramic materials produced from coal fly ash. Journal of Hazardous Materials 153 (1–2):418–25. doi:10.1016/j.jhazmat.2007.08.071.
  • Flesoura, G., P. R. Monich, R. Murillo Alarcón, D. Desideri, E. Bernardo, J. Vleugels, Y. Pontikes. 2021. Porous glass-ceramics made from microwave vitrified municipal solid waste incinerator bottom ash. Construction and Building Materials 270:121452. doi:10.1016/j.conbuildmat.2020.121452.
  • Glymond, D., A. Roberts, M. Russell, and C. Cheeseman. 2018. Production of ceramics from coal furnace bottom ash. Ceramics International 44 (3):3009–14. doi:10.1016/j.ceramint.2017.11.057.
  • Karamanov, A., E. M. A. Hamzawy, E. Karamanova, N. B. Jordanov, and H. Darwish. 2020. Sintered glass-ceramics and foams by metallurgical slag with addition of CaF2. Ceramics International 46 (5):6507–16. doi:10.1016/j.ceramint.2019.11.132.
  • Lee, H.-J., S.-W. Kim, and S.-S. Ryu. 2015. Sintering behavior of aluminum nitride ceramics with MgO–CaO–Al2O3–SiO2 glass additive. International Journal of Refractory Metals & Hard Materials 53 (A):46–50. doi:10.1016/j.ijrmhm.2015.04.013.
  • Li, B., Y. Guo, and J. Fang. 2020. Effect of crystallization temperature on glass-ceramics derived from tailings waste. Journal of Alloys and Compounds 838:155503. doi:10.1016/j.jallcom.2020.155503.
  • Li, J., Q. Xian, Z. Li, Z. Chen, X. Zhang, Q. Chen, H. Dan, Y. Ding, and T. Duan. 2022. High-efficiency preparation of zircon ceramics using borosilicate glass as sintering additive. Ceramics International 48 (15):22506–15. doi:10.1016/j.ceramint.2022.04.270.
  • Li, P., H. Jin, H. Liu, Z. Wang, and N. Gao. 2022. Low-temperature sintering of CaZnSi2O6 glass ceramics with machinable precursor based on silicone rubber and enhanced mechanical strength by Bi2O3. Materials Letters 324:132650. doi:10.1016/j.matlet.2022.132650.
  • Luo, Y., S. Ma, Z. Zhao, Z. Wang, S. Zheng, and X. Wang. 2017. Preparation and characterization of whisker-reinforced ceramics from coal fly ash. Ceramics International 43 (1):1–11. doi:10.1016/j.ceramint.2016.09.211.
  • Luo, Y., Y. H. Wu, S. H. Ma, S.-L. Zheng, and P. K. Chu. 2019. An eco-friendly and cleaner process for preparing architectural ceramics from coal fly ash: Pre-activation of coal fly ash by a mechanochemical method. Journal of Cleaner Production 214:419–28. doi:10.1016/j.jclepro.2018.12.292.
  • Ma, Y., X. Meng, S. Yang, S. Kou, M. Guo, J. Ma, J. Deng, and S. Fan. 2023. Significant improvement of resistance to dry/water oxygen corrosion at medium and high temperatures of SiC/SiC composites upon matrix modification by Ca-Y-Al-si-O microcrystalline glass. Journal of the European Ceramic Society 43 (11):4645–55. doi:10.1016/j.jeurceramsoc.2023.04.016.
  • Marinina, O., M. Nevskaya, I. Jonek-Kowalska, R. Wolniak, and M. Marinin. 2021. Recycling of coal fly ash as an example of an efficient circular economy: A stakeholder approach. Energies 14 (12):3579. doi:10.3390/en14123597.
  • Mével, C., J. Carreaud, C. Caillaud, F. Bour, G. Delaizir, V. Castaing, B. Viana, P. Carles, F. Brisset, C. Genevois, et al. 2024. Sintering of lixiviated nano glass-ceramics: An original route to elaborate transparent ceramics. Journal of the European Ceramic Society 44 (1):393–400. doi:10.1016/j.jeurceramsoc.2023.09.004.
  • Montazerian, M., J. Fabián Schneider, B. Eftekhari Yekta, V. K. Marghussian, A. M. Rodrigues, and E. D. Zanotto. 2015. Sol–gel synthesis, structure, sintering and properties of bioactive and inert nano-apatite–zirconia glass–ceramics. Ceramics International 41 (9):11024–45. doi:10.1016/j.ceramint.2015.05.047.
  • Mu, N., D. Chen, and B. Li. 2023. Influence of Zn/Ba ratio on crystallization, sintering behavior and properties of CaO-Al2O3-SiO2 glass-ceramics. Journal of Non-Crystalline Solids 622:122622. doi:10.1016/j.jnoncrysol.2023.122662.
  • Pan, D. A., L. Li, Y. Wu, T. Liu, and H. Yu. 2018. Characteristics and properties of glass-ceramics using lead fuming slag. Journal of Cleaner Production 175:251–56. doi:10.1016/j.jclepro.2017.12.030.
  • Papamarkou, S., C. Sifaki, P. E. Tsakiridis, G. Bartzas, and K. Tsakalakis. 2018. Synthetic wollastonitic glass ceramics derived from recycled glass and medical waste incinerator fly ash. Journal of Environmental Chemical Engineering 6 (5):5812–19. doi:10.1016/j.jece.2018.09.006.
  • Ponsot, I., E. Bernardo, E. Bontempi, L. Depero, R. Detsch, R. K. Chinnam, and A. R. Boccaccini. 2015. Recycling of pre-stabilized municipal waste incinerator fly ash and soda-lime glass into sintered glass-ceramics. Journal of Cleaner Production 89:224–30. doi:10.1016/j.jclepro.2014.10.091.
  • Saha, A. K. 2018. Effect of class F fly ash on the durability properties of concrete. Sustainable Environment Research 28 (1):25–31. doi:10.1016/j.serj.2017.09.001.
  • Shao, X., L. Wang, X. Li, Z. Fang, B. Zhao, Y. Tao, L. Liu, W. Sun, and J. Sun. 2020. Study on rheological and mechanical properties of aeolian sand-fly ash-based filling slurry. Energies 13 (5):1266. doi:10.3390/en13051266.
  • Sobiecka, E., Z. Kołaciński, J. M. Rincón, Ł. Szymański, and T. P. Olejnik. 2019. Coloured sintered glass-ceramics from hospital incineration fly ash. Materials Letters 252:35–37. doi:10.1016/j.matlet.2019.05.047.
  • Sutcu, M., E. Erdogmus, O. Gencel, A. Gholampour, E. Atan, and T. Ozbakkaloglu. 2019. Recycling of bottom ash and fly ash wastes in eco-friendly clay brick production. Journal of Cleaner Production 233:753–64. doi:10.1016/j.jclepro.2019.06.017.
  • Temuujin, J., E. Surenjav, C. H. Ruescher, and J. Vahlbruch. 2019. Processing and uses of fly ash addressing radioactivity (critical review). Chemosphere 216:866–82. doi:10.1016/j.chemosphere.2018.10.112.
  • Wang, Y., X. Zhang, Y. Xu, J. Ma, L. Liu, and Z. Zhang. 2023. Preparation of oily sludge-derived glass-ceramics by low-temperature melting with addition of CaF2. Ceramics International 49 (24):40316–25. doi:10.1016/j.ceramint.2023.10.004.
  • Wrona, J., W. Ukowski, D. Brado, and P. Czupryński. 2020. Recovery of cenospheres and fine fraction from coal fly ash by a novel dry separation method. Energies 13 (14):3576. doi:10.3390/en13143576.
  • Xu, G., M. Li, J. Dong, F. Wang, Q. Liao, L. Liu, and J. Zhang. 2024. Effect of substituting Na2O with B2O3 on the crystallization and properties of MgO–Al2O3–SiO2 transparent glass-ceramics. Ceramics International 50 (2):2670–79. doi:10.1016/j.ceramint.2023.10.287.
  • Xu, G., and X. Shi. 2018. Characteristics and applications of fly ash as a sustainable construction material: A state of-the-art review, resources. Conservation and Recycling 136:95–109. doi:10.1016/j.resconrec.2018.04.010.
  • Yingjie, L., B. Zhitao, Z. Mei, H. Wang, and T. Wu. 2022. Leaching performance of glass–ceramic prepared from high-carbon ferrochromium slag and its application in the urban constructions. Transactions of the Indian Institute of Metals 75 (7):1909–15. doi:10.1007/s12666-022-02532-6.
  • Yongpeng, L., B. Shenxu, and Z. Yimin. 2022. Recycling of granite powder and waste marble produced from stone processing for the preparation of architectural glass–ceramic. Construction and Building Materials 346:128408. doi:10.1016/j.conbuildmat.2022.128408.
  • Yunlong, L., W. Fu, L. Qilong, L. Liu, Y. Wang, J. Zhou, Y. Xu, H. Zhu, and Y. Gu. 2021. Effect of TiO2 on crystallization kinetics, microstructure and properties of building glass-ceramics based on granite tailings. Journal of Non-Crystalline Solids 572:121092. doi:10.1016/j.jnoncrysol.2021.121092.
  • Zeng, L., H. Sun, T. Peng, and W.-M. Zheng. 2019. The sintering kinetics and properties of sintered glass-ceramics from coal fly ash of different particle size. Results in Physics 15:15102774–102774. doi:10.1016/j.rinp.2019.102774.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.