0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Impact of power input in pulp conditioning on coal flotation and real-time characterization by focused beam reflectance measurement (FBRM)

, , , , &
Pages 10078-10091 | Received 12 Mar 2024, Accepted 17 Jul 2024, Published online: 27 Jul 2024

References

  • Barros, L., M. Gim-Krumm, G. Seriche, M. Quilaqueo, C. Castillo, C. F. Ihle, R. Ruby-Figueroa, and H. Estay. 2021. In-situ and real-time aggregation size evolution of copper sulfide precipitates using focused beam reflectance measurement (FBRM). Powder Technology 380:205–18. doi:10.1016/j.powtec.2020.11.038.
  • Chakladar, S., R. Banerjee, A. Mohanty, S. Chakravarty, and P. Kumar Patar. 2022. Turpentine oil: A novel and natural bridging liquid for agglomeration of coal fines of high ash coals. International Journal of Coal Preparation & Utilization 42 (7). Taylor & Francis: 2028–2040. doi:10.1080/19392699.2020.1789976.
  • Cheng, Y., X. Fu, S. Yan, J. Liu, X. Shi, and Z. Huang. 2018. Study of a novel environmental friendly frother in coal flotation. International Journal of Coal Preparation & Utilization 40 (November):1–12. doi:10.1080/19392699.2018.1544560.
  • Dou, Z., S. Qin, W. Baoping, and Z. Nan. 2024. Numerical simulation of solid-liquid mixing based on fluent BT - Proceedings of the 13th International conference on computer engineering and networks. In Lecture notes in electrical engineering, ed. Y. Zhang, L. Qi, Q. Liu, G. Yin, and X. Liu, vol. 1126, 479–87. Singapore: Springer.
  • Heath, A. R., P. D. Fawell, P. A. Bahri, and J. D. Swift. 2002. Estimating average particle size by focused beam reflectance measurement (FBRM). Particle & Particle Systems Characterization 19 (2):84–95. doi:10.1002/1521-4117(200205)19:2<84:AID-PPSC84>3.0.CO;2-1.
  • Jia, X., Y. Yu, J. Liu, C. Min, F. Liu, N. Zhang, S. Chen, and Z. Zhu. 2023. Changes in surface hydrophobicity of coal particles and the formation of coarse particle–bubble clusters in the process of high-intensity conditioning. Processes 11 (6):1723. doi:10.3390/pr11061723.
  • Kyoda, Y., A. D. Costine, P. D. Fawell, J. Bellwood, and G. K. Das. 2019. Using focused beam reflectance measurement (FBRM) to monitor aggregate structures formed in flocculated clay suspensions. Minerals Engineering 138 (January): 148–60. Elsevier. doi:10.1016/j.mineng.2019.04.045.
  • Lai, Q., Y. Liao, M. An, Z. Liu, Y. Qiu, and L. Ma. 2018. Enhanced graphite recovery by optimising flotation energy input. Separation Science and Technology 54 (September):1–9. doi:10.1080/01496395.2018.1518333.
  • Lang, X. 2020. Application of cyclonic microbubble flotation column in Xiezhuang coal preparation plant: From laboratory to industrial scale. International Journal of Coal Preparation & Utilization 40 (6):403–17. doi:10.1080/19392699.2017.1365065.
  • Li, D., X. Yan, W. Wang, H. Wang, R. Zhou, H. Yang, and H. Zhang. 2022. New insights into the intensification of Collector adsorption on fine particles induced by flow field. Journal of molecular liquids 365:120119. doi:10.1016/j.molliq.2022.120119.
  • Li, Z., C. Zhao, H. Zhang, J. Liu, C. Yang, and S. Xiong. 2019. Process intensification of stirred pulp-mixing in flotation. Chemical Engineering & Processing - Process Intensification 138:55–64. doi:10.1016/j.cep.2019.03.008.
  • Nakhaei, F., and M. Irannajad. 2018. Reagents types in flotation of iron oxide minerals: A review. Mineral Processing & Extractive Metallurgy Review. 39 (2):89–124. doi:10.1080/08827508.2017.1391245.
  • Pascal, C., F. Ndoye, A. Delahaye, L. Fournaison, W. Lin, and D. Dalmazzone. 2014. Particle size distribution of TBPB hydrates by focused beam reflectance measurement (FBRM) for secondary refrigeration application. International Journal of Refrigeration 50:19–31, October. doi:10.1016/j.ijrefrig.2014.10.016.
  • Quast, K. 2015. Use of conditioning time to investigate the mechanisms of interactions of selected fatty acids on hematite. Part 1: Literature survey. Minerals Engineering 79:295–300. doi:10.1016/j.mineng.2015.03.028.
  • Ramudzwagi, M., N. Tshiongo-Makgwe, and W. Nheta. 2020. Recent developments in beneficiation of fine and ultra-fine coal -review paper. Journal of Cleaner Production 276:122693. doi:10.1016/j.jclepro.2020.122693.
  • Rao, M., S. Nikkam, S. Kumar Tripathy, S. Kumar, M. Rao Kadagala, and S. Nikkam. 2021. A review on flotation of coal using mixed reagent systems. Minerals Engineering 173 (August):107217. Elsevier Ltd. doi:10.1016/j.mineng.2021.107217.
  • Sun, Y., G. Xie, Y. Peng, Y. Chen, and G. Ma. 2019. How does high intensity conditioning affect flotation performance? International Journal of Coal Preparation & Utilization 39 (6):302–16. doi:10.1080/19392699.2017.1316717.
  • Uçbeyiay, H., A. Ozkan, and S. Aydogan. 2006. Shear flocculation of celestite with anionic surfactants and effects of some inorganic dispersants. Colloids and Surfaces A, Physicochemical and Engineering Aspects 281 (1–3):92–98, June. doi:10.1016/j.colsurfa.2006.02.020.
  • Wang, D., D. Wang, K. Wang, and Q. Liu. 2023. Effects of agitation intensity and foam stability on the floc-flotation of ultrafine minerals using a laboratory flotation column. Minerals Engineering 204:108443. doi:10.1016/j.mineng.2023.108443.
  • Xia, W., C. Zhou, and Y. Peng. 2017. Enhancing flotation cleaning of intruded coal dry-ground with heavy oil. Journal of Cleaner Production 161:591–97. doi:10.1016/j.jclepro.2017.05.193.
  • Xin, T., and K. Xu. 2022. Shear-flocculation flotation. In The ECPH encyclopedia of mining and metallurgy, ed. K. Xu, 1–2. Singapore: Springer Nature Singapore. doi:10.1007/978-981-19-0740-1_568-1.
  • Yang, S., Y. Wu, W. Chai, and Y. Cao. 2023. Effect of energy input on surface properties and dispersion of diaspore and kaolinite in flotation process. Chemical Engineering & Processing - Process Intensification 192:109518, June). doi:10.1016/j.cep.2023.109518.
  • Yin, W.-Z., X.-S. Yang, D.-P. Zhou, Y.-J. Li, and Z.-F. LÜ. 2011. Shear hydrophobic flocculation and flotation of ultrafine Anshan hematite using sodium oleate. Transactions of Nonferrous Metals Society of China 21 (3):652–64. doi:10.1016/S1003-6326(11)60762-0.
  • Yu, Y., J. Liu, X. Jia, C. Min, F. Liu, N. Zhang, S. Chen, Z. Zhu, and A.-N. Zhou. 2024. A new perspective on the understanding of high-intensity conditioning: Incompatibility of conditions required for coarse and fine coal particles. Mineral Processing & Extractive Metallurgy Review 45 (4):245–54. doi:10.1080/08827508.2022.2152019.
  • Zhou, R., H. Wang, X. Li, D. Li, W. Wang, Y. Liang, X. Yan, and H. Zhang. 2023. Effect of energy input on flotation of particles with different sizes: Perspective of hydrodynamics characteristics. Journal of Environmental Chemical Engineering 11 (6):111272. doi:10.1016/j.jece.2023.111272.
  • Zhou, S., X. Wang, X. Bu, M. Wang, B. An, H. Shao, C. Ni, Y. Peng, and G. Xie. 2020. A novel flotation technique combining carrier flotation and cavitation bubbles to enhance separation efficiency of ultra-fine particles. Ultrasonics Sonochemistry 64 (1):105005. doi:10.1016/j.ultsonch.2020.105005.
  • Zhu, Z., W. Yin, B. Yang, H. Li, W. Guo, and J. Yao. 2019. Investigation on the flotation recovery and kinetics of coking coal using the mixture of oleic acid and kerosene as a novel Collector. Journal of Dispersion Science and Technology. 42 (1):75–81. doi:10.1080/01932691.2019.1659148.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.