0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Experimental study of the effect of gap between the stages of a double-stage Savonius Hydrokinetic turbine with end plates and blade overlapping at low water currents

, , &
Pages 10557-10578 | Received 21 Feb 2024, Accepted 29 Jun 2024, Published online: 01 Aug 2024

References

  • Abbasi, K. R., J. Abbas, and M. Tufail. 2021. Revisiting electricity consumption, price, and real GDP: A modified sectoral level analysis from Pakistan. Energy Policy 149:112087. doi:10.1016/j.enpol.2020.112087.
  • Alexander, A. J., and B. P. Holownia. 1978. Wind tunnel tests on a savonius rotor. J Ind Aerod 3 (4):343–51. doi:10.1016/0167-6105(78)90037-5.
  • Alizadeh, H., M. H. Jahangir, and R. Ghasempour. 2020. Cfd-based improvement of Savonius type hydrokinetic turbine using optimized barrier at the low-speed flows. Ocean Engineering 202:107178. doi:10.1016/j.oceaneng.2020.107178.
  • Ayadi, A., M. Mosbahi, H. Nasraoui, and Z. Driss. 2023. Investigation of a helical Savonius turbine with a deflector system. Ocean Engineering 286:115655. doi:10.1016/j.oceaneng.2023.115655.
  • Bartl, J., F. Pierella, and L. Sætrana. 2012. Wake measurements behind an array of two model wind turbines. Energy Procedia 24:305–12. doi:10.1016/j.egypro.2012.06.113.
  • Bazooyar, B., and H. G. Darabkhani, ed(s). 2020. Design, manufacture and test of a micro-turbine renewable energy combustor. In Energy conversion and management, vol. 213, 112782. United Kingdom: Elsevier.
  • Chaudhari, V. N., and S. P. Shah. 2023. Numerical investigation on the performance of an innovative airfoil-bladed Savonius hydrokinetic turbine (ABSHKT) with deflector. International Journal of Thermofluids 17:100279. doi:10.1016/j.ijft.2023.100279.
  • Chemengich, S. J., S. Z. Kassab, and E. R. Lotfy. 2022. Effect of the variations of the gap flow guides geometry on the savonius wind turbine performance: 2D and 3D studies. Journal of Wind Engineering & Industrial Aerodynamics 222:104920. doi:10.1016/j.jweia.2022.104920.
  • Chen, L., J. Chen, H. Xu, H. Yang, C. Ye, and D. Liu. 2016. Wind tunnel investigation on the two- and three-blade savonius rotor with central shaft at different gap ratio. Journal of Renewable and Sustainable Energy 8 (1):013303. doi:10.1063/1.4940434.
  • Elbatran, A. H. A., O. B. Yaakob, and Y. M. Ahmed. 2021. Experimental investigation of a hydraulic turbine for hydrokinetic power generation in Irrigation/Rainfall channels. Journal of Marine Science and Application 20 (1):144–55. doi:10.1007/s11804-020-00152-4.
  • Fälth, H. E., N. Mattsson, L. Reichenberg, and F. Hedenus. 2023. Trade-offs between aggregated and turbine-level representations of hydropower in optimization models. Renewable and Sustainable Energy Reviews 183:113406. doi:10.1016/j.rser.2023.113406.
  • Frikha, S., Z. Driss, E. Ayadi, Z. Masmoudi, and M. S. Abid. 2016. Numerical and experimental characterization of multi-stage savonius rotors. Energy 114:382–404. doi:10.1016/j.energy.2016.08.017.
  • Healy, N., J. C. Stephens, and S. A. Malin. 2019. Embodied energy injustices: Unveiling and politicizing the transboundary harms of fossil fuel extractivism and fossil fuel supply chains. Energy Research & Social Science 48:219–34. doi:10.1016/j.erss.2018.09.016.
  • Ibrahim, M. M., N. H. Mostafa, A. H. Osman, and A. Hesham. 2020. Performance analysis of a stand-alone hybrid energy system for desalination unit in Egypt. Energy Conversion and Management 215:112941. doi:10.1016/j.enconman.2020.112941.
  • Jeon, K. S., J. I. Jeong, J. K. Pan, and K. W. Ryu. 2015. Effects of end plates with various shapes and sizes on helical Savonius wind turbines. Renewable Energy 79:167–76. doi:10.1016/j.renene.2014.11.035.
  • Khan, M. N. I., T. Iqbal, M. Hinchey, and V. Masek. 2009. Performance of savonius rotor as a water current turbine. The Journal of Ocean Technology 4 (2):71–83.
  • Kirke, B. K. 2011. Tests on ducted and bare helical and straight blade darrieus hydrokinetic turbines. Renewable Energy 36 (11):3013–22. doi:10.1016/j.renene.2011.03.036.
  • Kumar, A., R. P. Saini, G. Saini, and G. Dwivedi. 2020. Effect of number of stages on the performance characteristics of modified savonius hydrokinetic turbine. Ocean Engineering 217:108090. doi:10.1016/j.oceaneng.2020.108090.
  • Liao, C. N., and H. P. Kao. 2010. Supplier selection model using Taguchi loss function, analytical hierarchy process and multi-choice goal programming. Computers & Industrial Engineering 58 (4):571–77. doi:10.1016/j.cie.2009.12.004.
  • Mauro, S., S. Brusca, R. Lanzafame, and M. Messina. 2019. CFD modeling of a ducted Savonius wind turbine for the evaluation of the blockage effects on rotor performance. Renewable Energy 141:28–39. doi:10.1016/j.renene.2019.03.125.
  • Modi, V. J., N. J. Roth, and M. S. U. K. Fernando. 1984. Optimum-configuration studies and prototype design of a wind-energy-operated irrigation system. Journal of Wind Engineering & Industrial Aerodynamics 16 (1):85–96. doi:10.1016/0167-6105(84)90050-3.
  • Mohammadi, M., R. Mohammadi, A. Ramadan, and M. H. Mohamed. 2018. Numerical investigation of performance refinement of a drag wind rotor using flow augmentation and momentum exchange optimization. Energy 158:592–606. doi:10.1016/j.energy.2018.06.072.
  • Mosbahi, M., A. Ayadi, Y. Chouaibi, Z. Driss, and T. Tucciarelli. 2020. Experimental and numerical investigation of the leading edge sweep angle effect on the performance of a delta blades hydrokinetic turbine. Renewable Energy 162:1087–103. doi:10.1016/j.renene.2020.08.105.
  • Mosbahi, M., S. Elgasri, M. Lajnef, B. Mosbahi, and Z. Driss. 2021. Performance enhancement of a twisted Savonius hydrokinetic turbine with an upstream deflector. International Journal of Green Energy 18 (1):51–65. doi:10.1080/15435075.2020.1825444.
  • Osama, S., M. Emam, S. Ookawara, and M. Ahmed. 2024. Enhancing the performance of vertical axis hydrokinetic savonius turbines using a novel cambered hydrofoil profile for rotor blades. Ocean Engineering 292:116561. doi:10.1016/j.oceaneng.2023.116561.
  • Perez, A., and J. J. Garcia-Rendon. 2021. Integration of non-conventional renewable energy and spot price of electricity: A counterfactual analysis for Colombia. Renewable Energy 167:146–61. doi:10.1016/j.renene.2020.11.067.
  • Quaranta, E., M. Bonjean, D. Cuvato, C. Nicolet, M. Dreyer, A. Gaspoz, S. Rey-Mermet, B. Boulicaut, L. Pratalata, M. Pinelli, et al. 2020. Hydropower case study collection: Innovative low head and ecologically improved turbines, hydropower in existing infrastructures, hydropeaking reduction, digitalization and governing systems. Sustainability 12 (21):8873. doi:10.3390/su12218873.
  • Quaranta, E., and P. Davies. 2022. Emerging and innovative materials for hydropower engineering applications: Turbines, bearings, sealing, dams and waterways, and ocean power. Engineering 8:148–58. doi:10.1016/j.eng.2021.06.025.
  • Ridgill, M., S. P. Neill, M. J. Lewis, P. E. Robins, and S. D. Patil. 2021. Global riverine theoretical hydrokinetic resource assessment. Renewable Energy 174:654–65. doi:10.1016/j.renene.2021.04.109.
  • Saha, U. K., and M. J. Rajkumar. 2006. On the performance analysis of savonius rotor with twisted blades. Renewable Energy 31 (11):1776–88. doi:10.1016/j.renene.2005.08.030.
  • Salleh, M. B., N. M. Kamaruddin, and Z. Mohamed-Kassim. 2020. The effects of deflector longitudinal position and height on the power performance of a conventional Savonius turbine. Energy Conversion and Management 226:113584. doi:10.1016/j.enconman.2020.113584.
  • Salleh, M. B., N. M. Kamaruddin, Z. Mohamed-Kassim, and E. A. Bakar. 2021. Experimental investigation on the characterization of self-starting capability of a 3-bladed Savonius hydrokinetic turbine using deflector plates. Ocean Engineering 228:108950. doi:10.1016/j.oceaneng.2021.108950.
  • Sari, M. A., M. Badruzzaman, C. Cherchi, M. Swindle, N. Ajami, and J. G. Jacangelo. 2018. Recent innovations and trends in in-conduit hydropower technologies and their applications in water distribution systems. The Journal of Environmental Management 228:416–28. doi:10.1016/j.jenvman.2018.08.078.
  • Sarma, K. C., A. Biswas, and R. D. Misra. 2022. Experimental investigation of a two-bladed double-stage Savonius-akin hydrokinetic turbine at low flow velocity conditions. Renewable Energy 187:958–73. doi:10.1016/j.renene.2022.02.011.
  • Sarma, K. C., B. Nath, A. Biswas, and R. D. Misra. 2023. Design and performance investigation of a triple blade dual stage Savonius-alike hydrokinetic turbine from low flow stream reserves. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 45 (4):12099–117. doi:10.1080/15567036.2023.2268572.
  • Shahsavari, A., and M. Akbari. 2018. Potential of solar energy in developing countries for reducing energy-related emissions. Renewable and Sustainable Energy Reviews 90:275–91. doi:10.1016/j.rser.2018.03.065.
  • Shamsuddin, M. S. M., and N. M. Kamaruddin. 2023. Experimental study on the characterization of the self-starting capability of a single and double-stage Savonius turbine. Results in Engineering 17:100854. doi:10.1016/j.rineng.2022.100854.
  • Shashikumar, C. M., R. Honnasiddaiah, V. Hindasageri, and V. Madav. 2021. Studies on application of vertical axis hydro turbine for sustainable power generation in irrigation channels with different bed slopes. Renewable Energy 163:845–57. doi:10.1016/j.renene.2020.09.015.
  • Shashikumar, C. M., and V. Madav. 2021. Numerical and experimental investigation of modified V-shaped turbine blades for hydrokinetic energy generation. Renewable Energy 177:1170–97. doi:10.1016/j.renene.2021.05.086.
  • Shashikumar, C. M., H. Vijaykumar, and M. Vasudeva. 2021. Numerical investigation of conventional and tapered Savonius hydrokinetic turbines for low-velocity hydropower application in an irrigation channel. Sustainable Energy Technologies and Assessments 43:100871. doi:10.1016/j.seta.2020.100871.
  • Singh, O., G. Saini, and A. De. 2024. Hydrodynamic performance enhancement of savonius hydrokinetic turbine using wedge-shaped triangular deflector in conjunction with circular deflector. Ocean Engineering 292:116572. doi:10.1016/j.oceaneng.2023.116572.
  • Sinsel, S. R., R. L. Riemke, and V. H. Hoffmann. 2020. Challenges and solution technologies for the integration of variable renewable energy sources—a review. Renewable Energy 145:2271–85. doi:10.1016/j.renene.2019.06.147.
  • Solangi, Y. A., Q. Tan, N. H. Mirjat, G. D. Valasai, M. W. A. Khan, and M. Ikram. 2019. An integrated delphi-ahp and fuzzy TOPSIS approach toward ranking and selection of renewable energy resources in Pakistan. Processes 7 (2):118. doi:10.3390/pr7020118.
  • Taguchi, G. 1990. Introduction to quality engineering. (NY): McGraw-Hill.
  • Tahani, M., A. Rabbani, A. Kasaeian, M. Mehrpooya, and M. Mirhosseini. 2017. Design and numerical investigation of Savonius wind turbine with discharge flow directing capability. Energy 130:327–38. doi:10.1016/j.energy.2017.04.125.
  • Talukdar, P. K., A. Sardar, V. Kulkarni, and U. K. Saha. 2018. Parametric analysis of model Savonius hydrokinetic turbines through experimental and computational investigations. Energy Conversion and Management 158:36–49. doi:10.1016/j.enconman.2017.12.011.
  • Thiyagaraj, J., G. Anbuchezhiyan, V. K. Mamidi, R. Barathiraja, and S. Sura. 2023. Dynamic characteristic studies of novel flexible flip-type Savonius hydrokinetic turbine. Materials Today: Proceedings, VIT AP CAMPUS, Guntur, India.
  • Thiyagaraj, J., I. Rahamathullah, G. Anbuchezhiyan, R. Barathiraja, and A. Ponshanmugakumar. 2021. Influence of blade numbers, overlap ratio and modified blades on performance characteristics of the savonius hydro-kinetic turbine. Materials Today: Proceedings, Sri Sairam Institute of Technology, Chennai, India, vol. 46, 4047–53.
  • Turbulence intensity. 2013. http://www.cfd-online.com/Wiki/Turbulenceintensity.
  • Wang, Q., M. Su, R. Li and P. Ponce. 2019. The effects of energy prices, urbanization, and economic growth on energy consumption per capita in 186 countries. Journal of Cleaner Production 225:1017–32. doi:10.1016/j.jclepro.2019.04.008.
  • Wu, H. N., L. J. Chen, M. H. Yu, W. Y. Li, and B. F. Chen. 2012. On design and performance prediction of the horizontal-axis water turbine. Ocean Engineering 50:23–30. doi:10.1016/j.oceaneng.2012.04.003.
  • Yosry, A. G., A. Fernández-Jiménez, E. Álvarez-Álvarez, and E. B. Marigorta. 2021. Design and characterization of a vertical-axis micro tidal turbine for low velocity scenarios. Energy Conversion and Management 237:114144. doi:10.1016/j.enconman.2021.114144.
  • Zhang, Y., C. Kang, H. Zhao, and H. B. Kim. 2021. Effects of the deflector plate on performance and flow characteristics of a drag-type hydrokinetic rotor. Ocean Engineering 238:109760. doi:10.1016/j.oceaneng.2021.109760.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.