0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A techno-assessment approach on biogas yield from organic agriculture wastes of cauliflower and grape residues

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 10980-10993 | Received 06 Dec 2023, Accepted 23 Jul 2024, Published online: 09 Aug 2024

References

  • Biogas Plants in Rural Settings in India. Accessed December 11 2023. https://www.myclimate.org/en/get-active/climate-protection-projects/detail-climate-protection-projects/india-biogas-7204/.
  • Abbas, Y., S. Yun, A. Mehmood, F. A. Shah, K. Wang, E. T. Eldin, W. H. Al-Qahtani, S. Ali, and P. Bocchetta. 2023. Codigestion of cow manure and food waste for biogas enhancement and nutrients revival in bio-circular economy. Chemosphere 311:137018. doi:10.1016/j.chemosphere.2022.137018.
  • Acosta, N., I. D. Duh Kang, K. Rabaey, and J. De Vrieze. 2021. Cow manure stabilizes anaerobic digestion of cocoa waste. Waste Management 126:508–16. doi:10.1016/j.wasman.2021.02.010.
  • Al-Da’asen, A., A. Al-Harahsheh, M. Al- Hwaiti, and F. Irshaid Irshaid. 2022. Biogas production via anaerobic co-digestion of chemically treated wheat straw with sewage sludge or cow manure. Biomass Conversion and Biorefinery 14 (4):5505–16. doi:10.1007/s13399-022-02760-2.
  • Andre, L., I. Zdanevitch, C. Pineau, J. Lencauchez, A. Damiano, and A. Pauss. 2019. Dry anaerobic co-digestion of roadside grass and cattle manure at a 60 L batch pilot scale. Bioresource Technology 289:121737. doi:10.1016/j.biortech.2019.121737.
  • Arutyunov, V., V. Savchenko, I. Sedov, A. Arutyunov, and A. Nikitin. 2022. The fuel of our future: Hydrogen or methane? Methane 1 (2):96–106. doi:10.3390/methane1020009.
  • Azam, W., I. Khan, and S. A. Ali. 2023. Alternative energy and natural resources in determining environmental sustainability: A look at the role of government final consumption expenditures in France. Environmental Science and Pollution Research 30 (1):1949–65. doi:10.1007/s11356-022-22334-z.
  • Beniche, I., H. El Bari, J. A. Siles, A. F. Chica, and M. A. Martín. 2020. Methane production by anaerobic co-digestion of mixed agricultural waste: Cabbage and cauliflower. Environmental Technology 42 (28):1–9. doi:10.1080/09593330.2020.1770341.
  • Chowdhary, P., A. Gupta, E. Gnansounou, A. Pandey, and P. Chaturvedi. 2021. Current trends and possibilities for exploitation of grape pomace as potential source for value addition. Environmental Pollution 278:116796. doi:10.1016/j.envpol.2021.116796.
  • Dolle, K., N. Weizmann, and J. R. Lang. 2022. Biogas production potential from anaerobic Co-digestion of grape pomace. Journal of Energy Research and Reviews 11 (2):21–30. doi:10.9734/jenrr/2022/v11i230273.
  • Ingabire, H., M. M. M’arimi, K. H. Kiriamiti, and B. Ntambara. 2023. Optimization of biogas production from anaerobic co-digestion of fish waste and water hyacinth. Biotechnology for Biofuels and Bioproducts 16 (1):110. doi:10.1186/s13068-023-02360-w.
  • International Energy Agency. 2010-2030. Bioenergy use by sector globally in the net zero scenario. Accessed October 25, 2023. https://www.iea.org/energy-system/renewables/bioenergy.
  • Jiang, M., S. Song, H. Liu, X. Dai, and P. Wang. 2022. Responses of methane production, microbial community and antibiotic resistance genes to the mixing ratio of gentamicin mycelial residues and wheat straw in anaerobic co-digestion process. Science of the Total Environment 806:150488. doi:10.1016/j.scitotenv.2021.150488.
  • Keerthana Devi, M., S. Manikandan, M. Oviyapriya, M. Selvaraj, M. A. Assiri, R. S. Sundaram Vickram, N. Karmegam, S. W. C. Balasubramani Ravindran, and M. Kumar Awasthi. 2022. Recent advances in biogas production using agro-industrial waste: A comprehensive review outlook of techno-economic analysis. Bioresource Technology 363:127871. doi:10.1016/j.biortech.2022.127871.
  • Kosheleva, A., G. Gadaleta, S. De Gisi, J. Heerenklage, C. Picuno, M. Notarnicola, K. Kuchta, and A. Sorrentino. 2023. Co-digestion of food waste and cellulose-based bioplastic: From batch to semi-continuous scale investigation. Waste Management 156:272–81. doi:10.1016/j.wasman.2022.11.031.
  • Kriswantoro, J. A., K. Y. Pan, and C. Y. Chu. 2024. Co-digestion approach for enhancement of biogas production by mixture of untreated Napier grass and industrial hydrolyzed food waste. Frontiers in Bioengineering and Biotechnology 11:1269727. doi:10.3389/fbioe.2023.1269727.
  • Lin, M., and T. Begho. 2022. Crop residue burning in South Asia: A review of the scale, effect, and solutions with a focus on reducing reactive nitrogen losses. The Journal of Environmental Management 314:115104. doi:10.1016/j.jenvman.2022.115104.
  • Liu, X., Y. Yang, N. Wu, Y. Wei, H. Shan, and H. Zhao. 2022. Co-production of Biohydrogen and Biomethane from chicken manure and food waste in a two-stage anaerobic fermentation process. Applied Biochemistry and Biotechnology 194 (8):3706–20. doi:10.1007/s12010-022-03945-1.
  • Mittal, S., E. O. Ahlgren, and P. R. Shukla. 2018. Barriers to biogas dissemination in India: A review. Energy Policy 112:361–70. doi:10.1016/j.enpol.2017.10.027.
  • Mohanty, A., P. R. Rout, B. Dubey, S. S. Meena, P. Pal, and M. Goel. 2022. A critical review on biogas production from edible and non-edible oil cakes. Biomass Conversion and Biorefinery 12 (3):949–66. doi:10.1007/s13399-021-01292-5.
  • Mozhiarasi, V., P. M. B. Rose, D. Weichgrebe, and V. S. Shanmugham. 2023. Comparative study on effect of shredding and extrusion on biogas production from cauliflower and banana peduncle wastes. Environment, Development, and Sustainability. doi:10.1007/s10668-023-03990-8.
  • Mrosso, R., A. C. Mecha, and J. Kiplagat. 2023. Characterization of kitchen and municipal organic waste for biogas production: Effect of parameters. Heliyon 9 (5):e16360. doi:10.1016/j.heliyon.2023.e16360.
  • Narendra, N., N. Krishnamurthy, M. B. Sagar, M. S. Murali, and T. Arunkumar. 2020. Characterisation and feasibility study of potential energy for biogas yield from co-digestion of silkworm larval litter and cashew nut fruit. International Journal of Ambient Energy 43 (1):2759–66. doi:10.1080/01430750.2020.1772874.
  • Ngan, N. V. C., et al. 2020. Anaerobic digestion of rice straw for biogas production. In Sustainable rice straw management, ed. M. Gummert, N. Hung, P. Chivenge, and B. Douthwaite. Springer, Cham. doi:10.1007/978-3-030-32373-8_5.
  • Porichha, G. K., Y. Hu, K. T. V. Rao, and C. C. Xu. 2021. Crop residue management in India: Stubble burning vs. Other utilizations including bioenergy. Energies 14 (14):1–17. doi:10.3390/en14144281.
  • Priyanka, Y., S. Yadav, D. Singh, and B. Shekher Giri. 2022. Sustainable rural waste management using biogas technology: An analytical hierarchy process decision framework. Chemosphere 301:134737. doi:10.1016/j.chemosphere.2022.134737.
  • Rahman, A., R. Shahazi, S. Noureen, B. Nova, M. R. Uddin, and S. Hossain. 2021. Biogas production from anaerobic co - digestion using kitchen waste and poultry manure as substrate — part 1: Substrate ratio and effect of temperature. Biomass Conversion Biorefinery 13 (8):6635–45. doi:10.1007/s13399-021-01604-9.
  • Rangseesuriyachai, T., J. Boonnorat, N. Glanpracha, W. Khetkorn, P. Thiamngoen, and K. Pinpatthanapong. 2023. Anaerobic co-digestion of elephant dung and biological pretreated Napier grass: Synergistic effect and kinetics of methane production. Biomass & bioenergy 175:106849. doi:10.1016/j.biombioe.2023.106849.
  • Saha, B., S. Koley, M. Khwairakpam, and A. S. Kalamdhad. 2022. Comparative study between mono-digestion and co-digestion of terrestrial weed (parthenium hysterophorus. Cleaner Engineering and Technology 11:100560. doi:10.1016/j.clet.2022.100560.
  • Shinali, T. S., Y. Zhang, M. Altaf, A. Nsabiyeze, Z. Han, S. Shi, and N. Shang. 2024. The valorization of wastes and byproducts from cruciferous vegetables: A review on the potential utilization of cabbage, cauliflower, and broccoli byproducts. Foods 13 (8):1163. doi:10.3390/foods13081163.
  • Sozer, S. 2023. A research on biogas production from a mixture of olive pomace and cattle manure. Biomass Conversion and Biorefinery 14 (9):10651–59. doi:10.1007/s13399-023-04405-4.
  • Tang, B., M. He, Y. Dong, J. Liu, X. Zhao, C. Wang, and W. Zhang. 2020. Effects of different forms of vegetable waste on biogas and methane production performances in a batch anaerobic digestion reactor. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 1–11. doi:10.1080/15567036.2020.1818003.
  • Tsapekos, P., B. Khoshnevisan, M. Alvarado-Morales, A. Symeonidis, P. G. Kougias, and I. Angelidaki. 2019. Environmental impacts of biogas production from grass: Role of co-digestion and pretreatment at harvesting time. Applied Energy 252:113467. doi:10.1016/j.apenergy.2019.113467. [ Google Scholar.
  • Tsegaye, D., and S. Leta. 2022. Optimization of operating parameters for biogas production using two-phase bench-scale anaerobic digestion of slaughterhouse wastewater: Focus on methanogenic step. Bioresources and Bioprocessing 9 (1):125. doi:10.1186/s40643-022-00611-6. [ Google Scholar.
  • Ulukardesler, A. H. 2023. Anaerobic co-digestion of grass and cow manure: Kinetic and GHG calculations. Scientific Reports 13 (1):6320. doi:10.1038/s41598-023-33169-0. [ Google Scholar.
  • Wi, J., S. Lee, and H. Ahn. 2023. Influence of dairy manure as inoculum source on anaerobic digestion of swine manure. Bioengineering (Basel) 10 (4):432. doi:10.3390/bioengineering10040432.
  • Wu, D., L. Li, F. Zhen, H. Liu, F. Xiao, Y. Sun, X. Peng, Y. Li, and X. Wang. 2022. Thermodynamics of volatile fatty acid degradation during anaerobic digestion under organic overload stress: The potential to better identify process stability. Water Research 214:118187. doi:10.1016/j.watres.2022.118187.
  • Zamanzadeh, M., L. H. Hagen, K. Svensson, R. Linjordet, and S. Jarle Horn. 2017. Biogas production from food waste via co-digestion and digestion- effects on performance and microbial ecology. Scientific Reports 7 (1):17664. doi:10.1038/s41598-017-15784-w.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.