0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Post-outburst coal pulverization: Experimental insights with representative accident samples

, ORCID Icon, , , &
Pages 11413-11434 | Received 15 Apr 2024, Accepted 07 Jul 2024, Published online: 09 Aug 2024

References

  • An, F. H., Y. Yuan, X. J. Chen, Z. Q. Li, and L. Y. Li. 2019. Expansion energy of coal gas for the initiation of coal and gas outbursts (article). Fuel 235:551–57. doi:10.1016/j.fuel.2018.07.132.
  • Chen, K. P. 2011. A new mechanistic model for prediction of instantaneous coal outbursts - dedicated to the memory of Prof. Daniel D. Joseph (article). International Journal of Coal Geology 87 (2):72–79. doi:10.1016/j.coal.2011.04.012.
  • Chen, Y. 2019. Study on distribution of outstanding coal pore size. Coal 28 (4):55+62.
  • Cheng, M., Y. P. Cheng, L. Wang, B. A. Hu, K. Z. Zhang, and Z. N. Jiang. 2023. Effect of dynamic fragmentation on microscopic pore structure in coal: New insights into CH4 adsorption characteristics (article). Fuel 333:13. doi:10.1016/j.fuel.2022.126228.
  • Cheng, Q., G. Huang, Z. Q. Li, J. Zheng, and Q. M. Liang. 2024. Effect of coal particle breakage on gas desorption rate during coal and gas outburst (article). Applied Sciences-Basel 14 (1):19. doi:10.3390/app14010469.
  • Fan, C. J., S. Li, D. Elsworth, J. Han, and Z. H. Yang. 2020. Experimental investigation on dynamic strength and energy dissipation characteristics of gas outburst-prone coal (article). Energy Science and Engineering 8 (4):1015–28. doi:10.1002/ese3.565.
  • Feng, G. J., X. Z. Zhao, M. Wang, Y. Song, S. J. Zheng, Y. He. 2022. Fractal pore and its impact on gas adsorption capacity of outburst coal: Geological significance to coalbed gas occurrence and outburst (article). Adsorption Science & Technology 2022:19. doi:10.1155/2022/4273900.
  • Guo, J. Q., T. H. Kang, J. T. Kang, G. F. Zhao, and Z. M. Huang. 2014. Effect of the lump size on methane desorption from anthracite (article). Journal of Natural Gas Science & Engineering 20:337–46. doi:10.1016/j.jngse.2014.07.019.
  • Hao, Z., K. L. Jian, S. J. Peng, and J. Xu. 2021. Numerical investigation of coal and gas outbursts under different in situ stresses and gas pressures and the physical characteristics of coal (article). American Chemical Society Omega 6 (20):13260–74. doi:10.1021/acsomega.1c01168.
  • Hou, Q. L., H. J. Li, J. J. Fan, Y. W. Ju, T. K. Wang, X. S. Li, and Y. Wu. 2012. Structure and coalbed methane occurrence in tectonically deformed coals (review). Science China-Earth Sciences 55 (11):1755–63. doi:10.1007/s11430-012-4493-1.
  • Hou, S. H., X. M. Wang, X. J. Wang, Y. Yuan, S. Pan, and X. Wang. 2017. Pore structure characterization of low volatile bituminous coals with different particle size and tectonic deformation using low pressure gas adsorption. International Journal of Coal Geology 183:1–13. doi:10.1016/j.coal.2017.09.013.
  • Hu, B. 2022. Methane adsorption behavior characteristics of multi-scale pore structure in coal and its microscopic influencing mechanism. Doctor thesis, China University of Mining & Technology, Xuzhou, China.
  • Hu, Q. T. 2007. Study on the mechanical mechanism of coal and gas outburst and its application. Doctor thesis, China University of Mining and Technology, Xuzhou, China.
  • Jiang, H. N. 2015. Pore structure effect on ad-desorption dynamics of methane in pulverized coal. Doctor thesis, China University of Mining and Technology, Xuzhou, China.
  • Jin, K. 2017. Research on formation mechanism of high pressure pulverized coal-gas two phase flow during outburst and its disaster characteristic. Doctor thesis, China University of Mining and Technology, Xuzhou, China.
  • Lei, Y., Y. P. Cheng, T. Ren, Q. Y. Tu, L. Shu, and Y. Li. 2021. The energy principle of coal and gas outbursts: Experimentally evaluating the role of gas desorption (article). Rock Mechanics & Rock Engineering 54 (1):11–30. doi:10.1007/s00603-020-02246-5.
  • Liu, T., B. Q. Lin, X. H. Fu, Y. B. Gao, J. Kong, Y. Zhao, and H. Song. 2020. Experimental study on gas diffusion dynamics in fractured coal: A better understanding of gas migration in in-situ coal seam (article). Energy 195:10. doi:10.1016/j.energy.2020.117005.
  • Long, Q. M., Q. T. Hu, Z. Y. Zhang, and T. Ren. 2018. On factors affecting coalbed gas content measurement (article). Measurement 121:47–56. doi:10.1016/j.measurement.2018.02.026.
  • Ma, Y. K., B. S. Nie, X. Q. He, X. C. Li, J. Q. Meng, and D. Z. Song. 2020. Mechanism investigation on coal and gas outburst: An overview (review). International Journal of Minerals, Metallurgy & Materials 27 (7):872–87. doi:10.1007/s12613-019-1956-9.
  • Meng, H., Y. Z. Yang, H. J. Guo, W. Hou, X. W. Li, L. Chen, T. Rong, F. An, and D. Yang. 2024. Gas pressure, in-situ stress and coal strength effects on the evolution process of coal and gas outbursts based on the experimental data. Energy Sources Part A-Recovery Utilization and Environmental Effects 46 (1):1214–31. doi:10.1080/15567036.2023.2298003.
  • Pan, Z. J., and L. D. Connell. 2012. Modelling permeability for coal reservoirs: A review of analytical models and testing data (review). International Journal of Coal Geology 92:1–44. doi:10.1016/j.coal.2011.12.009.
  • Qi, L. L., X. Tang, Z. F. Wang, and X. S. Peng. 2017. Pore characterization of different types of coal from coal and gas outburst disaster sites using low temperature nitrogen adsorption approach. International Journal of Mining Science and Technology 27 (2):371–77. doi:10.1016/j.ijmst.2017.01.005.
  • Shu, L. Y., L. Yuan, Q. X. Li, W. T. Xue, N. N. Zhu, and Z. S. Liu. 2023. Response characteristics of gas pressure under simultaneous static and dynamic load: Implication for coal and gas outburst mechanism (article). International Journal of Mining Science and Technology 33 (2):155–71. doi:10.1016/j.ijmst.2022.11.005.
  • Si, L. L., Z. H. Li, Y. L. Yang, L. Xin, Z. Liu, Y. N. Liu, and X. Zhang. 2017. Experimental investigation for pore structure and CH 4 release characteristics of coal during pulverization process. Energy & Fuels 31 (12):14357–66. doi:10.1021/acs.energyfuels.7b01995.
  • Skoczylas, N., B. Dutka, and J. Sobczyk. 2014. Mechanical and gaseous properties of coal briquettes in terms of outburst risk. Fuel 134:45–52. doi:10.1016/j.fuel.2014.05.037.
  • Tang, J., N. Yu, and S. J. J. S. E. Chen. 2017. Impact of the gas pressure on the jet outburst energy of coal and gas. Journal of Safety and Environment 17:943–48.
  • Tu, Q. Y. 2019. Study on apparent physical structure of tectonic coal and spallation development mechanism of coal and gas outburst. Doctor thesis, China University of Mining and Technology, Xuzhou, China.
  • Wang, G., M. M. Wu, W. M. Cheng, J. H. Chen, W. Z. J. Y. L. R. Du, and S. Mechanics. 2015. Analysis of energy conditions for coal and gas outburst and factors influencing outburst intensity. Rock and Soil Mechanics 36 (10):2974–82.
  • Wang, H., L. Wang, S. Zheng, Y. Sun, S. Shen, and X. Zhang. 2024. Research on coal matrix pore structure evolution and adsorption behavior characteristics under different thermal stimulation (article). Energy 287:287. doi:10.1016/j.energy.2023.129677.
  • Wang, J., Q. Hou, F. Zeng, and G.-J. Guo. 2021. Stress sensitivity for the occurrence of coalbed gas outbursts: A reactive force field molecular dynamics study. Energy & Fuels 35 (7):5801–07. doi:10.1021/acs.energyfuels.0c04201.
  • Wang, K., and F. Du. 2020. Coal-gas compound dynamic disasters in China: A review (review). Process Safety and Environmental Protection 133:1–17. doi:10.1016/j.psep.2019.10.006.
  • Wang, S., D. Elsworth, and J. Liu. 2015. Rapid decompression and desorption induced energetic failure in coal (article). Journal of Rock Mechanics and Geotechnical Engineering 7 (3):345–50. doi:10.1016/j.jrmge.2015.01.004.
  • Wang, X. L., D. M. Zhang, E. Su, Z. Jiang, C. Wang, Y. Chu, and C. Ye. 2020. Pore structure and diffusion characteristics of intact and tectonic coals: Implications for selection of CO2 geological sequestration site (article). Journal of Natural Gas Science & Engineering 81:103388. doi:10.1016/j.jngse.2020.103388.
  • Wang, Y. L., C. W. Li, M. Hao, H. Zhang, and X. Q. Sun. 2022. Damage characteristics of pulverized coal under different gas pressures in coal and gas outbursts. Energy Sources Part A-Recovery Utilization and Environmental Effects 44 (4):9385–94. doi:10.1080/15567036.2022.2128473.
  • Wang, Y. L., C. W. Li, Z. F. Li, Q. S. Ye, and X. Gao. 2023. Lost gas and desorption kinetics of coal at different pressures, exposure times, and sampling intervals (article). Journal of Energy Engineering 149 (4):8. doi:10.1061/jleed9.Eyeng-4681.
  • Xu, L. H., H. A. Jiang, and H. Zhang. 2023. Mechanism of the delayed coal-gas outburst caused by creep instability of the ‘barrier layer and tectonic coal’ combination (article). Geomechanics and Geophysics for Geo-Energy and Geo-Resources 9 (1):12. doi:10.1007/s40948-023-00579-3.
  • Yang, D. D., L. D. Pan, Y. J. Chen, and J. Tang. 2021. Comparison of outburst hazard of coal with different failure types: A case study (Article; early access). Energy Sources Part A-Recovery Utilization and Environmental Effects 13:1–13. doi:10.1080/15567036.2021.1922549.
  • Yang, G., D. Z. Song, M. Wang, L. M. Qiu, X. Q. He, M. Khan, and S. Qian. 2024. New insights into dynamic disaster monitoring through asynchronous deformation induced coal-gas outburst mechanism of tectonic and raw coal seams (article). Energy 295:13. doi:10.1016/j.energy.2024.131063.
  • Yu, S., J. Bo, and L. Jie-Gang. 2017. Nanopore structural characteristics and their impact on methane adsorption and diffusion in low to medium tectonically deformed coals: Case study in the Huaibei coal field. Energy & Fuels 31 (7):6711–23. doi:10.1021/acs.energyfuels.7b00512.
  • Zhang, A. X., D. Y. Cao, Y. C. Wei, and T. E. Rufford. 2020. Characterization of fines produced during drainage of coalbed methane reservoirs in the Linfen block, Ordos Basin (article). Energy Exploration & Exploitation 38 (5):1664–79. doi:10.1177/0144598720935528.
  • Zhang, C. L., P. Z. Wang, X. F. Liu, E. Y. Wang, Q. Z. Jiang, and M. L. Liu. 2024. Energy evolution and coal crushing mechanisms involved in coal and gas outburst (Article; early access). Natural Resources Research 33 (1):455–70. doi:10.1007/s11053-023-10285-2.
  • Zhao, W. 2018. Diffusion dynamics of rapid desorption of gas from pulverized coal and its influence on transporting coal and rock in outbursts. Doctor thesis, China University of Mining and Technology, Xuzhou, China.
  • Zhao, Y. X., T. Liu, N. N. Danesh, Y. F. Sun, S. M. Liu, and Y. Wang. 2020. Quantification of pore modification in coals due to pulverization using synchrotron small angle X-ray scattering (article). Journal of Natural Gas Science & Engineering 84:11. doi:10.1016/j.jngse.2020.103669.
  • Zhou, A. T., M. Zhang, K. Wang, D. Elsworth, N. Deng, and J. Y. Hu. 2021. Rapid gas desorption and its impact on gas-coal outbursts as two-phase flows (article). Process Safety and Environmental Protection 150:478–88. doi:10.1016/j.psep.2021.04.042.
  • Zhu, L. S. 1984. Coal crushing and its influence on coal and gas outburst. Mining Safety & Environmental Protection 4:17–24.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.