0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A novel decoupled triple-fluidized bed reaction system for polyvinyl chloride (PVC) disposal: (I) Thermodynamic simulation and experimental investigation

, , , &
Pages 10900-10910 | Received 04 Dec 2023, Accepted 25 Jul 2024, Published online: 05 Aug 2024

References

  • Chen, Z. Z., D. R. Wu, L. Chen, M. X. Ji, J. Zhang, Y. Y. Du, and Z. Wu. 2021. The fast co-pyrolysis study of PVC and biomass for disposing of solid wastes and resource utilization in N2 and CO2. Process Safety and Environmental Protection 150:489–96. doi:10.1016/j.psep.2021.04.035.
  • Choi, Y. K., J. H. Ko, and J. S. Kim. 2017. A new type three-stage gasification of dried sewage sludge: Effect of equivalence ratio, weight ratio of activated carbon to feed, and feed rate on gas composition and tar, NH3, and H2S removal and results of approximately 5 h gasification. Energy 118:139–46. doi:10.1016/j.energy.2016.12.032.
  • Fekhar, B., L. Gombor, and N. Miskolczi. 2019. Pyrolysis of chlorine contaminated municipal plastic waste: In-situ upgrading of pyrolysis oils by Ni/ZSM-5, Ni/SAPO-11, red mud and Ca(OH)2 containing catalysts. Journal of the Energy Institute 92 (5):1270–83. doi:10.1016/j.joei.2018.10.007.
  • Hu, E. F., Y. Zhang, Z. H. Liu, J. L. Yu, M. S. Li, Q. G. Xiong, and Y. Zeng. 2024. Insight into dechlorination of pyrolysis oil during fast co-pyrolysis of high-alkali coal and polyvinyl chloride (PVC). Chemical Engineering Journal 494:153016. doi:10.1016/j.cej.2024.153016.
  • Kaminsky, W., and I. N. Zorriqueta. 2007. Catalytical and thermal pyrolysis of polyolefins. Journal of Analytical and Applied Pyrolysis 79 (1–2):368–74. 10.1016/j.jaap.2006.11.005.
  • Kok, M. V. 2012. Simultaneous thermogravimetry–calorimetry study on the combustion of coal samples: Effect of heating rate. Energy Conversion and Management 53 (1):40–44. doi:10.1016/j.enconman.2011.08.005.
  • Li, W., Z. Q. Bai, T. T. Zhang, Y. X. Jia, Y. J. Hou, J. Chen, Z. Guo, L. Kong, J. Bai, and W. Li. 2023. Comparative study on pyrolysis behaviors and chlorine release of pure PVC polymer and commercial PVC plastics. Fuel 340 (15):127555. doi:10.1016/j.fuel.2023.127555.
  • Li, X., Y. J. Tang, Y. Zhao, G. N. Li, G. Q. Luo, W. M. Wang, C. Ye, and Y. Xu. 2022. Dual effect of CaO on waste PVC plastics pyrolysis: A kinetics study using fraser-suzuki deconvolution. Thermochimica Acta 715:179295. doi:10.1016/j.tca.2022.179295.
  • López, A., I. de Marco, B. M. Caballero, M. F. Laresgoiti, and A. Adrados. 2011. Dechlorination of fuels in pyrolysis of PVC containing plastic wastes, fuel process. Fuel Processing Technology 92 (2):253–60. doi:10.1016/j.fuproc.2010.05.008.
  • Nawaz, A., and S. A. Razzak. 2024. Co-pyrolysis of biomass and different plastic waste to reduce hazardous waste and subsequent production of energy products: A review on advancement, synergies, and future prospects. Renewable Energy 224:120103. doi:10.1016/j.renene.2024.120103.
  • Nishibata, H., M. A. Uddin, and Y. Kato. 2020. Simultaneous degradation and dechlorination of poly (vinyl chloride) by a combination of superheated steam and CaO catalyst/adsorbent. Polymer Degradation & Stability 179:109225. doi:10.1016/j.polymdegradstab.2020.109225.
  • Pan, J., H. Jiang, T. P. Qing, J. F. Zhang, and K. Tian. 2021. Transformation and kinetics of chlorine-containing products during pyrolysis of plastic wastes. Chemosphere 284:13348. doi:10.1016/j.chemosphere.2021.131348.
  • Partanen, J., P. Backman, R. Backman, and M. Hupa. 2005. Absorption of HCl by limestone in hot flue gases. Part I: The effects of temperature, gas atmosphere and absorbent quality. Fuel 84 (12–13):1664–73. doi:10.1016/j.fuel.2005.02.011.
  • Peng, Y. J., Y. P. Wang, L. Y. Ke, L. L. Dai, Q. H. Wu, K. Cobb, Y. Zeng, R. Zou, Y. Liu, and R. Ruan. 2022. A review on catalytic pyrolysis of plastic wastes to high-value products. Energy Conversion and Management 254:115243. doi:10.1016/j.enconman.2022.115243.
  • Shen, Y. F., D. C. Ma, and X. L. Ge. 2017. CO 2 -looping in biomass pyrolysis or gasification. Sustainable Energy and Fuels 1 (8):1700–29. doi:10.1039/C7SE00279C.
  • Song, T., T. X. Shen, L. H. Shen, J. Xiao, H. M. Gu, and S. W. Zhang. 2013. Evaluation of hematite oxygen carrier in chemical-looping combustion of coal. Fuel 104:244–52. doi:10.1016/j.fuel.2012.09.030.
  • Wang, C. B., J. X. Wang, M. Lei, and H. N. Gao. 2013. Investigations on combustion and NO emission characteristics of coal and biomass blends. Energy & Fuels 27 (10):6185–190. doi:10.1021/ef401589k.
  • Williams, P. T., and E. Slaney. 2007. Analysis of products from the pyrolysis and liquefaction of single plastics and waste plastic mixtures. Resources, Conservation & Recycling 51 (4):754–69. doi:10.1016/j.resconrec.2006.12.002.
  • Yang, J. B., N. S. Cai, and Z. S. Li. 2008. Hydrogen production from the steam−iron process with direct reduction of iron oxide by chemical looping combustion of coal char. Energy & Fuels 22 (4):2570–79. doi:10.1021/ef800014r.
  • Yang, M. F., B. Luo, J. G. Shao, K. Zeng, X. Zhang, and H. P. Yang. 2018. The influence of CO2 on biomass fast pyrolysis at medium temperatures. Journal of Renewable and Sustainable Energy 10 (1):013108. doi:10.1063/1.5005013.
  • Yang, Y., Y. Chen, Y. C. Deng, and X. Y. Ji. 2021. The characteristics and kinetics of co-pyrolysis of furfural residue with oil shale semi-coke. Oil Shale 38 (1):26–41. doi:10.3176/oil.2021.1.02.
  • Yang, Y., X. F. Lu, and Q. H. Wang. 2017. Investigation on the co-combustion of low calorific oil shale and its semi-coke by using thermogravimetric analysis, energy convers. Energy Conversion and Management 136 (15):99–107. doi:10.1016/j.enconman.2017.01.006.
  • Ye, L. H., T. L. Li, and L. Hong. 2021. Co-pyrolysis of Fe3O4-poly(vinyl chloride) (PVC) mixtures: Mitigation of chlorine emissions during PVC recycling. Waste Management 126:832–42. doi:10.1016/j.wasman.2021.04.021.
  • Yuan, G., D. Chen, L. Yin, Z. Wang, L. Zhao, and J. Y. Wang. 2014. High efficiency chlorine removal from polyvinyl chloride (PVC) pyrolysis with a gas–liquid fluidized bed reactor. Waste Management 34 (6):1040–50. doi:10.1016/j.wasman.2013.08.021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.