324
Views
15
CrossRef citations to date
0
Altmetric
Research Article

Impact analysis of demand response on optimal allocation of wind and solar based distributed generations in distribution system

, , &

References

  • Abdel-mawgoud, H., S. Kamel, M. Ebeed, and A. R. Youssef, 2017, December. Optimal allocation of renewable dg sources in distribution networks considering load growth. Nineteenth International Middle East Power Systems Conference (MEPCON), Cairo, Egypt, December 19–21. doi:10.1109/MEPCON.2017.8301340.
  • Ahmadi, B., O. Ceylan, and A. Özdemir, 2019, September. Grey wolf optimizer for allocation and sizing of distributed renewable generation. 54th IEEE International Universities Power Engineering Conference (UPEC), Bucharest, Romania, September 3–6.
  • Ahmed, I. M., S. Kamel, H. Abdel-Mawgoud, and J. Yu, 2018, December. Optimal allocation of PV based DG in distribution networks at different load levels. Twentieth International Middle East Power Systems Conference (MEPCON), Cairo, Egypt, December 18–20. doi:10.1109/MEPCON.2018.8635122.
  • Ali, E. S., S. A. Elazim, and A. Y. Abdelaziz. 2017. Ant lion optimization algorithm for optimal location and sizing of renewable distributed generations. Renewable Energy 101:1311–24. doi:10.1016/j.renene.2016.09.023.
  • Atwa, Y. M., and E. F. El-Saadany. 2011. Probabilistic approach for optimal allocation of wind-based distributed generation in distribution systems. IET Renewable Power Generation 5 (1):79–88. doi:10.1049/iet-rpg.2009.0011.
  • Awad, A. S., T. H. El-Fouly, and M. M. Salama. 2014. Optimal distributed generation allocation and load shedding for improving distribution system reliability. Electric Power Components and Systems 42 (6):576–84. doi:10.1080/15325008.2014.880962.
  • Baran, M. E., and F. F. Wu. 1989. Network reconfiguration in distribution systems for loss reduction and load balancing. IEEE Power Engineering Review 9 (4):101–02. doi:10.1109/61.25627.
  • Bazrafshan, M., L. Yalamanchili, N. Gatsis, and J. Gomez. 2019. Stochastic planning of distributed PV generation. Energies 12 (3):459. doi:10.3390/en12030459.
  • Da Costa, J. A., C. Branco, D. Alves, M. C. Pimentel Filho, M. Firmino de Medeiros, and N. Fidelis da Silva. 2019. Optimal sizing of photovoltaic generation in radial distribution systems using lagrange multipliers. Energies 12 (9):1728. doi:10.3390/en12091728.
  • Ehsan, A., M. Cheng, and Q. Yang. 2019. Scenario-based planning of active distribution systems under uncertainties of renewable generation and electricity demand. CSEE Journal of Power and Energy Systems 5 (1):56–62. doi:10.17775/CSEEJPES.2018.00460.
  • Ehsan, A., and Q. Yang. 2018. Optimal integration and planning of renewable distributed generation in the power distribution networks: A review of analytical techniques. Applied Energy 210:44–59. doi:10.1016/j.apenergy.2017.10.106.
  • Hung, D. Q., N. Mithulananthan, and K. Y. Lee. 2014a. Determining PV penetration for distribution systems with time-varying load models. IEEE Transactions on Power Systems 29 (6):3048–57. doi:10.1109/TPWRS.2014.2314133.
  • Hung, D. Q., N. Mithulananthan, and K. Y. Lee. 2014b. Optimal placement of dispatchable and nondispatchable renewable DG units in distribution networks for minimizing energy loss. International Journal of Electrical Power & Energy Systems 55:179–86. doi:10.1016/j.ijepes.2013.09.007.
  • Hussain, M., Y. Gao, S. Semba, M. Irshad, and F. Shair. 2020. Examination of optimum benefits of customer and LSE by incentive and dynamic price-based demand response. Energy Sources, Part B: Economics, Planning, and Policy 15 (6):383–401. doi:10.1080/15567249.2020.1808913.
  • Jabr, R. A., R. Singh, and B. C. Pal. 2012. Minimum loss network reconfiguration using mixed-integer convex programming. IEEE Transactions on Power Systems 27 (2):1106–15. doi:10.1109/TPWRS.2011.2180406.
  • Kavousi-Fard, A., A. Zare, and A. Khodaei. 2018. Effective dynamic scheduling of reconfigurable microgrids. IEEE Transactions on Power Systems 33 (5):5519–30. doi:10.1109/TPWRS.2018.2819942.
  • Kefayat, M., A. L. Ara, and S. N. Niaki. 2015. A hybrid of ant colony optimization and artificial bee colony algorithm for probabilistic optimal placement and sizing of distributed energy resources. Energy Conversion and Management 92:149–61. doi:10.1016/j.enconman.2014.12.037.
  • Knak Neto, N., A. D. R. Abaide, V. Miranda, P. Vilaça Gomes, L. Carvalho, J. Sumaili, and D. P. Bernardon. 2019. Load modeling of active low‐voltage consumers and comparative analysis of their impact on distribution system expansion planning. International Transactions on Electrical Energy Systems 12038. doi:10.1002/2050-7038.12038.
  • Löfberg, J., 2004. YALMIP: A toolbox for modeling and optimization in MATLAB. Proc. CACSD Conf., Taipei, Taiwan, September 2–4. doi:10.1109/CACSD.2004.1393890.
  • Menesy, A. S., H. M. Sultan, A. Korashy, F. A. Banakhr, M. G. Ashmawy, and S. Kamel. 2020. Effective parameter extraction of different polymer electrolyte membrane fuel cell stack models using a modified artificial ecosystem optimization algorithm. IEEE Access 8:31892–909. doi:10.1109/ACCESS.2020.2973351.
  • Menesy, A. S., H. M. Sultan, A. Selim, M. G. Ashmawy, and S. Kamel. 2019. Developing and applying chaotic harris hawks optimization technique for extracting parameters of several proton exchange membrane fuel cell stacks. IEEE Access 8:1146–59. doi:10.1109/ACCESS.2019.2961811.
  • Mokryani, G. 2015. Active distribution networks planning with integration of demand response. Solar Energy 122:1362–70. doi:10.1016/j.solener.2015.10.052.
  • Moradi, M. H., and M. Abedini. 2012. A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution systems. International Journal of Electrical Power & Energy Systems 34 (1):66–74. doi:10.1016/j.ijepes.2011.08.023.
  • Pekez, J., L. Radovanovc, E. Desnica, and M. Lambic. 2016. The increase of exploitability of renewable energy sources. Energy Sources, Part B: Economics, Planning, and Policy 11 (1):51–57. doi:10.1080/15567249.2011.580318.
  • Rabiee, A., and S. M. Mohseni-Bonab. 2017. Maximizing hosting capacity of renewable energy sources in distribution networks: A multi-objective and scenario-based approach. Energy 120:417–30. doi:10.1016/j.energy.2016.11.095.
  • Rawat, T., and K. R. Niazi. 2019. Impact of EV charging/discharging strategies on the optimal operation of islanded microgrid. The Journal of Engineering (18):4819–23. doi:10.1049/joe.2018.9335.
  • Rawat, T., and K. R. Niazi. 2020. Risk averse energy management for grid connected microgrid using information gap decision theory. In Intelligent computing techniques for smart energy systems, 465–73. Singapore: Springer.doi:10.1007/978-981-15-0214-9_50
  • Rawat, T., K. R. Niazi, N. Gupta, and S. Sharma. 2019a. Impact assessment of electric vehicle charging/discharging strategies on the operation management of grid accessible and remote microgrids. International Journal of Energy Research. doi:10.1002/er.4882.
  • Rawat, T., K. R. Niazi, N. Gupta, and S. Sharma, 2019b, December. A two stage interactive framework for demand side management in smart grid. 2019 IEEE 16th India Council International Conference (INDICON), Rajkot, India, (1–4).IEEE. doi: 10.1109/INDICON47234.2019.9030293.
  • Selim, A., S. Kamel, A. S. Alghamdi, and F. Jurado. 2020. Optimal placement of DGs in distribution system using an improved harris hawks optimizer based on single-and multi-objective approaches. IEEE Access 8:52815–29. doi:10.1109/ACCESS.2020.2980245.
  • Selim, A., S. Kamel, and F. Jurado. 2020a. Efficient optimization technique for multiple DG allocation in distribution networks. Applied Soft Computing 86:105938. doi:10.1016/j.asoc.2019.105938.
  • Selim, A., S. Kamel, and F. Jurado. 2020b. Optimal allocation of distribution static compensators using a developed multi-objective sine cosine approach. Computers & Electrical Engineering 85:106671. doi:10.1016/j.compeleceng.2020.106671.
  • Sharma, S., K. R. Niazi, K. Verma, and T. Rawat. 2020. Coordination of different DGs, BESS and demand response for multi-objective optimization of distribution network with special reference to Indian power sector. International Journal of Electrical Power & Energy Systems 121:106074. doi:10.1016/j.ijepes.2020.106074.
  • Siano, P., and G. Mokryani. 2013. Assessing wind turbines placement in a distribution market environment by using particle swarm optimization. IEEE Transactions on Power Systems 28 (4):3852–64. doi:10.1109/TPWRS.2013.2273567.
  • Singh, A. K., and S. K. Parida. 2016. Impact analysis of RES-based DGs with economical considerations in restructured electricity market. Energy Sources, Part B: Economics, Planning, and Policy 11 (5):472–79. doi:10.1080/15567249.2011.649824.
  • Singh, J., and R. Tiwari. 2019. Real power loss minimisation of smart grid with electric vehicles using distribution feeder reconfiguration. IET Generation, Transmission & Distribution 13 (18):pp.4249–4261.
  • Singh, P., S. K. Bishnoi, and N. K. Meena. 2019. Moth search optimization for optimal DERs integration in conjunction to OLTC tap operations in distribution systems. IEEE Systems Journal 14:880–88. doi:10.1109/JSYST.2019.2911534.
  • Stavrakas, V., and A. Flamos. 2020. A modular high-resolution demand-side management model to quantify benefits of demand-flexibility in the residential sector. Energy Conversion and Management 205:112339. doi:10.1016/j.enconman.2019.112339.
  • Stavrakas, V., S. Papadelis, and A. Flamos. 2019. An agent-based model to simulate technology adoption quantifying behavioural uncertainty of consumers. Applied Energy 255:113795. doi:10.1016/j.apenergy.2019.113795.
  • Sudabattula, S. K., and M. Kowsalya. 2016. Optimal allocation of solar based distributed generators in distribution system using Bat algorithm. Perspectives in Science 8:270–72. doi:10.1016/j.pisc.2016.04.048.
  • Sultana, S., and P. K. Roy. 2014. Multi-objective quasi-oppositional teaching learning based optimization for optimal location of distributed generator in radial distribution systems. International Journal of Electrical Power & Energy Systems 63:534–45. doi:10.1016/j.ijepes.2014.06.031.
  • Talebi, A., and A. Hatami. 2020. Online fuzzy control of HVAC systems considering demand response and users’ comfort. Energy Sources, Part B: Economics, Planning, and Policy 1:20. doi:10.1080/15567249.2020.1825557.
  • Ullah, Z., M. R. Elkadeem, and S. Wang, 2019, November. Artificial intelligence technique for optimal allocation of renewable energy based dgs in distribution networks. International Conference on Broadband and Wireless Computing, Communication and Applications, Springer, Cham. 409–22.
  • Viana, M. S., G. M. Junior, and M. E. Udaeta. 2018. Analysis of demand response and photovoltaic distributed generation as resources for power utility planning. Applied Energy 217:456–66. doi:10.1016/j.apenergy.2018.02.153.
  • Viral, R., and D. K. Khatod. 2015. An analytical approach for sizing and siting of DGs in balanced radial distribution networks for loss minimization. International Journal of Electrical Power & Energy Systems 67:191–201. doi:10.1016/j.ijepes.2014.11.017.
  • Yan, X., Y. Ozturk, Z. Hu, and Y. Song. 2018. A review on price-driven residential demand response. Renewable and Sustainable Energy Reviews 96:411–19. doi:10.1016/j.rser.2018.08.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.