318
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A realistic assessment of day-ahead profit for wind farms in frequency–based energy pricing environment

ORCID Icon & ORCID Icon

References

  • Aasim, S.N. Singh, and A. Mohapatra. 2019. Repeated wavelet transform based ARIMA model for very short-term wind speed forecasting, Renewable Energy 136: 758–768. doi:10.1016/j.renene.2019.01.031
  • Abarghooee, R. A., T. Niknam, A. Roosta, A. R. Malekpour, and M. Zare. 2012. Probabilistic multiobjective wind-thermal economic emission dispatch based on point estimated method. Energy 37 (1):322–35. doi:10.1016/j.energy.2011.11.023.
  • Abdelaziz, A. Y., M. M. Othman, M. Ezzat, and A. M. Mahmoud. 2016. A novel Monte-Carlo based modeling strategy for wind based renewable energy sources, Eighteenth Int. Middle East Power Systems Conf. Systems: 1–6.  Cairo, Egypt. doi: 10.1109/MEPCON.2016.7836897.
  • Abdusamad, K. 2018. Wind energy reliability analysis based on Monte Carlo simulation method. Conf. For Eng. Sci. And Tech. (CEST-2018) 2:1–12. doi:10.21467/proceedings.4.41.
  • Ambach, D. 2016. Short-term wind speed forecasting in Germany. Journal of Applied Statistics 43 (2):351–69. doi:10.1080/02664763.2015.1063113.
  • Arellano, M. S., and P. Serra. 2010. Long-term contract auctions and market power in regulated power industries. Energy Policy 38 (4):1759–63. doi:10.1016/j.enpol.2009.11.050.
  • Availability Based Tariff: 2003. [last accessed April 2019]. https://shodhganga.inflibnet.ac.in/bitstream/10603/180644/11/11_chapter%203.pdf.
  • Babu, C. N., and B. E. Reddy. 2014. A moving-average filter based hybrid ARIMA-ANN model for forecasting time series data. Applied Soft Computing 23:27–38. doi:10.1016/j.asoc.2014.05.028.
  • Biswas, P. P., P. N. Suganthan, and G. A. J. Amaratunga. 2017. Optimal power flow solutions incorporating stochastic wind and solar power. Energy Conversion and Management 148:1194–207. doi:10.1016/j.enconman.2017.06.071.
  • Boyle, J., T. Littler, and A. Foley. 2020. Battery energy storage system state-of-charge management to ensure availability of frequency regulating services from wind farms. Renewable Energy 160:1119–35. doi:10.1016/j.renene.2020.06.025.
  • Bruck, M., P. Sandborn, and N. Goudarzi. 2018. A Levelized Cost of Energy (LCOE) model for wind farms that include Power Purchase Agreements (PPAs). Renewable Energy 122:131–39. doi:10.1016/j.renene.2017.12.100.
  • Brunetto, C., and G. Tina. 2011. Wind generation imbalances penalties in day-ahead energy markets: The Italian case. Electric Power Systems Research 81 (7):1446–55. doi:10.1016/j.epsr.2011.02.009.
  • Brusca, S., R. Lanzafame, and M. Messina. 2014. Wind turbine placement optimization by means of the Monte Carlo simulation method. Modelling and Simulation in Engineering 2014:1–8. doi:10.1155/2014/760934.
  • Central Electricity Regulatory Commission: 2014. [last accessed April 2019]. http://www.cercind.gov.in/2018/regulation/IEGC-SOR.pdf.
  • Central Electricity Regulatory Commission: 2018. [last accessed May 2020]. http://www.cercind.gov.in/2018/regulation/IEGC-SOR.pdf.
  • Cepeda, M., and D. Finon. 2013. How to correct for long-term externalities of large-scale wind power development by a capacity mechanism? Energy Policy 61:671–85. doi:10.1016/j.enpol.2013.06.046.
  • Chinmoy, L., S. Iniyan, and R. Goic. 2019. Modeling wind power investments, policies and social benefits for deregulated electricity market- A review. Applied Energy 242:364–77. doi:10.1016/j.apenergy.2019.03.088.
  • Council on Energy, Environment and Water: 2020. [last accessed June 2020]. https://ceew.in/renewables.
  • Dahlke, S. 2018. Effects of wholesale electricity markets on wind generation in the Midwestern United States. Energy Policy 122:358–68. doi:10.1016/j.enpol.2018.07.026.
  • Dehkordi, P. Z., L. Rakai, and H. Zareipour. 2016. Deciding on the support schemes for upcoming wind farms in competitive electricity markets. Energy 116:8–16. doi:10.1016/j.energy.2016.09.105.
  • Delgado, C., and J. A. D. Navarro. 2014. Point estimate method for probabilistic load flow of an unbalanced power distribution system with correlated wind and solar sources. Electric. Power and Ener. Sys 61:267–78. doi:10.1016/j.ijepes.2014.03.055.
  • Dhillon, J. A. Kumar, and S. K. Singal. 2016. A stochastic approach for the operation of a wind and pumped storage plant under a deregulated environment, International Journal of Green Energy 13 (1): 55–62. doi:10.1080/15435075.2014.909358
  • Dolecek, G. J. 2012. MATLAB-Based program for teaching autocorrelation function and noise concepts. IEEE Trans. On Education 55 (3):349–56. doi:10.1109/TE.2011.2176736.
  • Deviation settlement mechanism and related matters [last accessed on November 2019] http://www.cercind.gov.in/2018/regulation/dsm_fourth_amendment11-22-2018.pdf
  • Emissions Gap Report, 2019. [last accessed June 2020]. https://www.unenvironment.org/resources/emissions-gap-report-2019.
  • Electricity Market, 2018. [Last accessed on May 2020] https://www.iexindia.com/Uploads/Presentation/20_09_2018Electricity_PPT_%20August_18.pdf.
  • Fazelpour, F., N. Tarashkar, and M. A. Rosen. 2016. Short-term wind speed forecasting using artificial neural networks for Tehran, Iran. International Journal of Energy and Environment Engineering 7 (4):377–90. doi:10.1007/s40095-016-0220-6.
  • Foreign Exchange Dealer’s Association of India. [Last accessed August 2020]. https://fedai.org.in.
  • Gallagher, R., and A. C. Elmore. 2009. Monte Carlo Simulations of Wind Speed Data. Wind Engineering 33 (6):661–73. doi:10.1260/0309-524X.33.6.661.
  • Garson, G. D. 2012. Curve Fitting & Nonlinear Regression. Statistical Associates Publishing 1:1–53.
  • Gebreslassie, M. G. 2020. Public perception and policy implications towards the development of new wind farms in Ethiopia. Energy Policy 139:1113118. doi:10.1016/j.enpol.2020.111318.
  • Genc, A., M. Erisoglu, A. Pekgor, G. Oturanc, A. Hepbasli, and K. Ulgen. 2005. Estimation of Wind Power Potential Using Weibull Distribution. Energy Sources, Part B: Economics, Planning, and Policy 27 (9):809–22. doi:10.1080/00908310490450647.
  • Ghasemi, A. 2018. Coordination of pumped-storage unit and irrigation system with intermittent wind generation for intelligent energy management of an agricultural microgrid. Energy 142:1–13. doi:10.1016/j.energy.2017.09.146.
  • Global Energy Review, 2020. [last accessed June 2020]. https://iea.org/reports/global-energy-review-2020.
  • Green Energy Corridor Report: 2019. [last accessed April 2019]. https://www.powergridindia.com/green-energy-corridor-report.
  • Holttinen, H. 2012. Wind integration: Experience, issues and challenges. WIREs Energy and Environment 1 (3):243–55. doi:10.1002/wene.18.
  • Indian Electricity Grid Code Regulations: 2012. [last accessed April 2020]. https://cercind.gov.in/regulation.
  • Indian Electricity Grid Code Regulations: 2017. [last accessed April 2020]. https://cercind.gov.in/regulation/amendment.
  • Indian Energy Exchange:2020. [last accessed June 2020]. https://www.iexindia.com.
  • Indian Wind Grid Code:2009. [last accessed April 2019]. https://sari-energy.org/oldsite/PageFiles/What_We_Do/activities/IndiaSri_Lanka_WEEP_Nov_2009/Presentations/First_Day/Development_of_Grid_Code_for_Wind_Power_Generation_in_India.pdf.
  • IEA Renewables: 2020. [last accessed June 2020]. https://www.iea.org/reports/renewables-2020/wind#abstract.
  • James, G., D. Witten, T. Hastie, and R. Tibshirani. 2009. An Introduction to Statistical Learning with applications in R. Springer (2). doi:10.1007/978-1-4614-7138-7.
  • Jie, Z., D. X. Li, M. R. Farahani, M. Imran, and S. W. Wang. 2018. Economic feasibility of electricity generation from wind farms: A case study. Energy Sources, Part B: Economics, Planning, and Policy 13 (1):1–5. doi:10.1080/15567249.2017.1295117.
  • Kazor, K., and A. S. Hering. 2015. The role of regimes in short-term wind speed forecasting at multiple wind farms. Statistics 4 (1):271–90. doi:10.1002/sta4.91.
  • Khorasany, M., Y. Mishra, and G. Ledwich. 2020. A decentralized bilateral energy trading system for Peer-to-Peer electricity markets. IEEE Transaction on Industrial Electronics 67 (6):4646–57. doi:10.1109/TIE.2019.2931229.
  • Kumar, R., and K. V. S. Rao. 2016. Performance analysis of a 7.2 MW wind farm at Sikar in Rajasthan, International Conf. on Emerging Technologies Trends (ICETT) Kollam: 1–7. doi: 10.1109/ICETT.2016.7873694.
  • Kurban, M., and F. O. Hocaoglu. 2010. Potential analysis of wind energy as a power generation source. Energy Sources, Part B: Economics, Planning, and Policy 5 (1):19–28. doi:10.1080/15567240701759875.
  • Lai, C. S., G. Locatelli, A. Pimm, X. Li, and L. L. Lai. 2019. Levelized cost of electricity considering electrochemical energy storage cycle-life degradations. Energy Procedia 158:3308–13. doi:10.1016/j.egypro.2019.01.975.
  • Lei, X., and P. A. Sandborn. 2018. Maintenance scheduling based on remaining useful life predictions for wind farms managed using power purchase agreements. Renewable Energy 116 (B):188–98. doi:10.1016/j.renene.2017.03.053.
  • Li, X., J. Cao, and D. Du. 2013. Two-Point estimate method for probabilistic optimal power flow computation including wind farms with correlated parameters. ICSEE 355:417–23. doi:10.1007/978-3-642-37105-9_46.
  • Liu, Z., P. Jiang, L. Zhang, and X. Niu. 2019. A combined forecasting model for time series: Application to short-term wind speed forecasting. Applied Energy 259:114137. doi:10.1016/j.apenergy.2019.114137.
  • Loudiyi, K., A. Berrada, H. G. Svendsen, and K. Mentesidi. 2018. Grid code status for wind farms interconnection in Northern Africa and Spain: Descriptions and recommendations for Northern Africa. Renewable and Sustainable Energy Reviews 81:2584–98. doi:10.1016/j.rser.2017.06.065.
  • Luerssen, C., O. Gandhi, T. Reindl, C. Sekhar, and D. Cheong. 2020. Life cycle cost of analysis (LCCA) of PV-powered cooling systems with thermal energy and battery storage for off-grid applications. Applied Energy 273:115145. doi:10.1016/j.apenergy.2020.115145.
  • Mahmood, F. H., A. K. Resen, and A. B. Khamees. 2020. Wind characteristics analysis based on Weibull distribution of Al-Salman site, Iraq. Energy Reports 6:79–87. doi:10.1016/j.egyr.2019.10.021.
  • Malakar, T., S. K. Goswami, and A. K. Sinha. 2014. Optimum scheduling of micro grid connected wind-pumped storage hydro plant in a frequency based pricing environment. Electrical Power and Energy Systems 54:341–51. doi:10.1016/j.ijepes.2013.07.021.
  • Market- Indian Energy: 2020. [last accessed May 2020]. https://indianenergy.in.
  • Matschoss, P., B. Bayer, H. Thomas, and A. Marian. 2019. The German incentive regulation and its practical impact on the grid integration of renewable energy systems. Renewable Energy 134:727–38. doi:10.1016/j.renene.2018.10.103.
  • Mendicino, L., D. Menniti, A. Pinnarelli, and N. Sorrentino. 2019. Corporate power purchase agreement: Formulation of the related levelized cost of energy and its application to a real life case study. Applied Energy 253:113577. doi:10.1016/j.apenergy.2019.113577.
  • Mercer, N., G. Sabau, and A. Klinke. 2017. Wind energy is not an issue for government: Barriers to wind energy development in Newfoundland and Labrador, Canada. Energy Policy 108: 673–683. doi:10.1016/j.enpol.2017.06.022
  • Mokryani, G., and P. Siano. 2013. Combined Monte Carlo simulation and OPF for wind turbines integration into distribution networks. Electric Power Systems Research 103:37–48. doi:10.1016/j.epsr.2013.05.003.
  • Natarajan, V. K., and J. C. Kanmony. 2014. Sustainability in India through wind: A case study of Muppandal wind farm in India. International Journal of Green Economics 8 (1):1–5. doi:10.1504/IJGE.2014.064467.
  • National Centers for Environmental Information: 2019. [last accessed April 2019]. https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs.
  • National Centre for Medium Range Weather Forecasting: 2019. [last accessed December 2019]. https://www.ncmrwf.gov.in.
  • National Load Dispatch Centre: 2019. [last accessed December 2019]. https://posoco.in/reports/UIrates.
  • National Load Dispatch Centre: 2020. [last accessed February 2020]. https://posoco.in/reports/frequency-profile/frequency-profile-2019-20.
  • National Renewable Energy Laboratory: 2019. [last accessed April 2019]. https://www.nrel.gov.
  • Neuteboom, J. H., and P. C. Struik. 2005. A versatile curve-fit model for linear to deeply concave rank abundance curves. NJAS-Wageningen Journal of Life Sciences 53 (2):167–97. doi:10.1016/S1573-5214(05)80004-1.
  • Pan, C., C. Wang, Z. Zhao, J. Wang, and Z. Bie. 2018. A copula function based Monte Carlo simulation method of multivariate wind speed and PV power spatio-temporal series. Energy Procedia 159:213–18. doi:10.1016/j.egypro.2018.12.053.
  • Papaefthymiou, G., and K. Dragoon. 2016. Towards 100% renewable energy systems: Uncapping power system flexibility. Energy Policy 92:69–82. doi:10.1016/j.enpol.2016.01.025.
  • Peterson, C. R., and A. J. Ros. 2018. The future of the electric grid and its regulation: Some considerations. The Electricity Journal 31 (2):18–25. doi:10.1016/j.tej.2018.02.001.
  • Power Ministry’s 5-Year Plan Report: 2019. [last accessed June 2020]. http://mercomindia.com/power-ministry-5-year-plan-renewables-coal.
  • Power Purchase Agreement (PPA) for Renewable Energy: 2019. [last accessed April 2020]. http://www.apbechina.com/article/show_article.php?id=2977.
  • Power Purchase Agreements: 2018. [last accessed June 2020]. http://www.eex.com/blob/84514/885f68977f89ea0023c47a750dec0aff/180807-eex-power-purchase-agreements-presentation-data.pdf.
  • Power Purchase Agreements (PPAs) and Energy Purchase Agreements (EPAs):2017. [last accessed May 2020]. https://ppp.worldbank.org/public-private-partnership/sector/energy/energy-power-agreements/power-purchase-agreements.
  • Ragnarsson, B. F., G. V. Oddsson, R. Unnthorsson, and B. Hrafnkelsson. 2015. Levelized cost of energy analysis of a wind power generation system at Burfell in Iceland. Energies 8 (9):9464–85. doi:10.3390/en8099464.
  • Razali, N. M. M., and M. Misbah 2013. Probabilistic evaluation of wind power generation, IOP Conf. Ser.: Earth Environmental Science. Putrajaya, Malaysia. 16: 012028.
  • Salci, S., and G. P. Jenkins. 2018. An economic analysis for the design of ipp contracts for grid-connected renewable energy projects. Renewable and Sustainable Energy Reviews 81 (2):2410–20. doi:10.1016/j.rser.2017.06.047.
  • Seo, S., S. D. Oh, and H. Y. Kwak. 2019. Wind turbine power curve modeling using maximum likelihood estimation method. Renewable Energy 136:1164–69. doi:10.1016/j.renene.2018.09.087.
  • Shao, H., X. Deng, and Y. Jiang. 2018. A novel deep learning approach for short-term wind power forecasting based on infinite feature selection and recurrent neural network. Journal of Renewable and Sustainable Energy 10 (4):043303. doi:10.1063/1.5024297.
  • Shi, J., W. J. Lee, and X. Liu. 2018. Generation scheduling optimization of Wind-Energy storage system based on wind power output fluctuation features. IEEE Transactions on Industry Applications 54 (1):10–17. doi:10.1109/TIA.2017.2754978.
  • Shu, Z. R., Q. S. Li, and P. W. Chan. 2015. Investigation of offshore wind energy potential in Hong Kong based on Weibull distribution function. Applied Energy 156:362–73. doi:10.1016/j.apenergy.2015.07.027.
  • Sikar Weather Forecast: 2019. [last accessed June 2019]. https://www.worldweatheronline.com/lang/en-in/sikar-weather/rajasthan/in.aspx.
  • Sourkounis, C., and P. Tourou. 2012. Grid code requirements for wind power integration in Europe, Power Options for the Eastern Mediterranean region Conf. 2012: Hindawi: 1–9. Limassol, Cyprus.
  • Sukkiramath, K., and C. V. Seshaiah. 2019. Analysis of wind power potential by the three-parameter Weibull distribution to install a wind turbine. Energy, Exploration and Exploitation 38 (1):1–10. doi:10.1177/0144598719871628.
  • Tagliapietra, S., G. Zachmann, and G. Fredriksson. 2019. Estimating the cost of capital for wind energy investments in Turkey. Energy Policy 131:295–301. doi:10.1016/j.enpol.2019.05.011.
  • Unscheduled interchange [Last accessed December 2019] http://www.cercind.gov.in/Current_reg.html
  • Wais, P. 2017. Two and three-parameter Weibull distribution in available wind power analysis. Renewable Energy 103:15–29. doi:10.1016/j.renene.2016.10.041.
  • Wang, J., T. Niu, H. Lu, Z. Guo, W. Yang, and P. Du. 2018a. An analysis-forecast system for uncertainty modeling of wind speed: A case study of large-scale wind farms. Applied Energy 211:492–512. doi:10.1016/j.apenergy.2017.11.071.
  • Wang, L., J. Yuan, M. E. Cholette, Y. Fu, Y. Zhou, and A. C. Tan. 2018b. Comparative study of discretization method and Monte Carlo method for wind farm layout optimization under Weibull distribution. Journal of Wind Engineering and Industrial Aerodynamics 180:148–55. doi:10.1016/j.jweia.2018.07.021.
  • Wind Energy in India: 2019. [Last accessed April 2019]. http://indienum.dk/en/innovation/sector-updates/renewableenergy/wind-energy-in-India.
  • Wind Power in India: 2020. [last accessed May 2020]. https://en.wikipedia.org/wiki/Wind_power_in_India.
  • Xu, J., X. Yi, Y. Sun, T. Lan, and H. Sun. 2017. Stochastic optimal scheduling based on scenario analysis for wind farms. IEEE Transaction on Sustainable Energy 8 (4):1548–59. doi:10.1109/TSTE.2017.2694882.
  • Yeter, P., O. Guler, and S. A. Akdag. 2012. The impact of wind speed variability on wind power potential and estimated generation cost. Energy Sources, Part B: Economics, Planning, and Policy 7 (4):339–47. doi:10.1080/15567249.2011.628960.
  • Zeng, X., M. S. Nazir, M. Khaksar, K. Nishihara, and H. Tao. 2021. A day-ahead economic scheduling of micro grids equipped with plug-in hybrid electric vehicles using modified shuffled frog leaping algorithm. Journal of Energy Storage 33:102021. doi:10.1016/j.est.2020.102021.
  • Zhao, J., J. Wang, Z. Guo, Y. Guo, W. Lin, and Y. Lin. 2019. Multi-step wind speed forecasting based on numerical simulations and an optimized stochastic ensemble method. Applied Energy 255:113833. doi:10.1016/j.apenergy.2019.113833.
  • Zhenyu, S., Y. Tang, J. Ji, and Y. Todo. 2020. Evaluating a dendritic neuron model for wind speed forecasting. Knowledge-Based Systems 201-202:106052. doi:10.1016/j.knosys.2020.106052.
  • Zucatelli, P. J., E. G. S. Nascimento, G. Y. R. Aylas, N. B. P. Souza, Y. K. L. Kitagawa, A. A. B. Santos, A. M. G. Arce, and D. M. Moreira. 2019. Short-term wind speed forecasting in Uruguay using computational intelligence. Heliyon 5 (5):e01664. doi:10.1016/j.heliyon.2019.e01664.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.