59
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Optimum economic operation of coordinated power system based on turbulent water flow optimization

ORCID Icon, , ORCID Icon, &

References

  • Basu, M. 2016. Quasi-oppositional group search optimization for hydrothermal power system. International Journal of Electrical Power & Energy Systems 81:324–33. doi:10.1016/j.ijepes.2016.02.051.
  • Basu, M. 2022. Fuel constrained short-term hydrothermal generation scheduling. Energy 239:e122352. doi:10.1016/j.energy.2021.122352.
  • Cavazzini, G., G. Pavesi, and G. Ardizzon. 2018. A novel two-swarm based PSO search strategy for optimal short-term hydro-thermal generation scheduling. Energy Conversion and Management 164:460–81. doi:10.1016/j.enconman.2018.03.012.
  • Cheng, C., C. Su, P. Wang, J. Shen, J. Lu, and X. Wu. 2018. An MILP-based model for short-term peak shaving operation of pumped-storage hydropower plants serving multiple power grids. Energy 163:722–33. doi:10.1016/j.energy.2018.08.077.
  • Daneshvar, M., B. Mohammadreza, S. Asadi, and S. Galvani. 2020. Short term optimal hydro-thermal scheduling of the transmission system equipped with pumped storage in the competitive environment. Majlesi Journal of Electrical Engineering 14 (1):77–84. http://mjee.iaumajlesi.ac.ir/index/index.php/ee/article/view/3305.
  • Das, S., A. Bhattacharya, and A. K. Chakraborty. 2018a. Quasi-reflected ions motion optimization algorithm for short-term hydrothermal scheduling. Neural Computing & Applications 29 (6):123–49. doi:10.1007/s00521-016-2529-8.
  • Das, S., A. Bhattacharya, and A. K. Chakraborty. 2018b. Solution of short-term hydrothermal scheduling problem using quasi-reflected symbiotic organisms search algorithm considering multi-fuel cost characteristics of thermal generator. Arabian Journal for Science and Engineering 43 (6):2931–60. doi:10.1007/s13369-017-2973-5.
  • Dasgupta, K., P. K. Roy, and V. Mukherjee. 2022. Solution of short term integrated hydrothermal-solar-wind scheduling using sine cosine algorithm. Energy Strategy Reviews 40:e100824. doi:10.1016/j.esr.2022.100824.
  • Dubey, H. M., M. Pandit, and B. Panigrahi. 2016. Ant lion optimization for short-term wind integrated hydrothermal power generation scheduling. International Journal of Electrical Power & Energy Systems 83:158–74. doi:10.1016/j.ijepes.2016.03.057.
  • Fang, N., J. Zhou, R. Zhang, Y. Liu, and Y. Zhang. 2014. A hybrid of real coded genetic algorithm and artificial fish swarm algorithm for short-term optimal hydrothermal scheduling. International Journal of Electrical Power & Energy Systems 62:617–29. doi:10.1016/j.ijepes.2014.05.017.
  • Ferreira, A. F. M. 1994. On the convergence of the classic hydro-thermal coordination algorithm. IEEE Transactions on Power Systems 9 (2):1002–08. doi:10.1109/59.317644.
  • Ghasemi, M., I. F. Davoudkhani, E. Akbari, A. Rahimnejad, S. Ghavidel, and L. Li. 2020. A novel and effective optimization algorithm for global optimization and its engineering applications: Turbulent flow of water-based optimization (TFWO). Engineering Applications of Artificial Intelligence 92:e103666. doi:10.1016/j.engappai.2020.103666.
  • Helseth, A., S. Jaehnert, and A. L. Diniz. 2021. Convex relaxations of the short-term hydrothermal scheduling problem. IEEE Transactions on Power Systems 36 (4):3293–304. doi:10.1016/j.energy.2021.122379.
  • Jian, J., S. Pan, and L. Yang. 2019. Solution for short-term hydrothermal scheduling with a logarithmic size mixed-integer linear programming formulation. Energy 171:770–84. doi:10.1016/j.energy.2019.01.038.
  • Kumar, R., and A. Kumar. 2021. Optimal scheduling of variable speed pumped storage, solar and wind energy system. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–16. doi:10.1080/15567036.2021.1892243.
  • Li, C., W. Wang, and D. Chen. 2019. Multi-objective complementary scheduling of hydro-thermal-RE power system via a multi-objective hybrid grey wolf optimizer. Energy 171:241–55. doi:10.1016/j.energy.2018.12.213.
  • Liang, R. H. 2000. A noise annealing neural network for hydroelectric generation scheduling with pumped-storage units. IEEE Transactions on Power Systems 15 (3):1008–13. doi:10.1109/PICA.1999.779400.
  • Liao, X., J. Zhou, S. Ouyang, R. Zhang, and Y. Zhang. 2013. An adaptive chaotic artificial bee colony algorithm for short-term hydrothermal generation scheduling. International Journal of Electrical Power & Energy Systems 53:34–42. doi:10.1016/j.ijepes.2013.04.004.
  • Mohamed, M., A. R. Youssef, S. Kamel, and M. Ebeed. 2020. Lightning attachment procedure optimization algorithm for nonlinear non-convex short-term hydrothermal generation scheduling. Soft Computing 24 (21):16225–48. doi:10.1007/s00500-020-04936-2.
  • Nezhad, A. E., M. S. Javadi, and E. Rahimi. 2014. Applying augmented e-constraint approach and lexicographic optimization to solve multi-objective hydrothermal generation scheduling considering the impacts of pumped-storage units. Electrical Power and Energy Systems 55:195–204. doi:10.1016/j.ijepes.2013.09.006.
  • Roy, P. K. 2013. Teaching learning based optimization for short-term hydrothermal scheduling problem considering valve point effect and prohibited discharge constraint. International Journal of Electrical Power & Energy Systems 53:10–19. doi:10.1016/j.ijepes.2013.03.024.
  • Roy, P. K., A. Sur, and D. K. Pradhan. 2013. Optimal short-term hydro-thermal scheduling using quasi-oppositional teaching learning based optimization. Engineering Applications of Artificial Intelligence 26 (10):2516–24. doi:10.1016/j.engappai.2013.08.002.
  • Sakthivel, V. P., H. H. Goh, S. Srikrishna, P. D. Sathya, and S. K. Abdul Rahim. 2021. Multi-objective squirrel search algorithm for multi-area economic environmental dispatch with multiple fuels and valve point effects. IEEE Access 9:3988–4007. doi:10.1109/ACCESS.2020.3046257.
  • Sakthivel, V. P., and P. D. Sathya. 2021a. Fuzzified Coulomb’s and Franklin’s laws behaved optimization for economic dispatch in multi-area multi-fuel power system. SN Applied Sciences 3 (1):1–15. doi:10.1007/s42452-020-04017-x.
  • Sakthivel, V. P., and P. D. Sathya. 2021b. Single and multi-area multi-fuel economic dispatch using a fuzzified squirrel search algorithm. Protection and Control of Modern Power Systems 6 (1):1–13. doi:10.1186/s41601-021-00188-w.
  • Salam, M. S., K. M. Nor, and A. R. Hamdam. 1998. Hydrothermal scheduling based Lagrangian relaxation approach to hydrothermal coordination. IEEE Transactions on Power Systems 13 (1):226–35. doi:10.1109/59.651640.
  • Shafiekhani, M., A. Ahmadi, O. Homaee, M. Shafie-Khah, and J. P. Catalão. 2022. Optimal bidding strategy of a renewable-based virtual power plant including wind and solar units and dispatchable loads. Energy 239:122379. doi:10.1016/j.energy.2021.122379.
  • Swain, R. K., A. K. Barisal, P. K. Hota, and R. Chakrabarti. 2011. Short-term hydrothermal scheduling using clonal selection algorithm. International Journal of Electrical Power & Energy Systems 33 (3):647–56. doi:10.1016/j.ijepes.2010.11.016.
  • Vallejo-Correa, P., C. Barrera-Singaña, and A. Valenzuela. 2021. Evaluation of heuristic techniques for solving the short-term hydrothermal scheduling based on key performance indicators (KPIs). IEEE Fifth Ecuador Technical Chapters Meeting (ETCM), 1–7. IEEE. doi: 10.1109/ETCM53643.2021.9590707.
  • Zhang, Z., X. Wu, S. Liao, and C. Cheng. 2022. An ultra-short-term scheduling model for cascade hydropower regulated by multilevel dispatch centers suppressing wind power volatility. International Journal of Electrical Power & Energy Systems 134:e107467. doi:10.1016/j.ijepes.2021.107467.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.