290
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Thermal Conductivity Prediction of Thermally Conductive, Electrically Insulating Materials under van der Waals Interactions

, &
Pages 63-74 | Received 22 Jul 2014, Accepted 25 Dec 2014, Published online: 26 Feb 2015

REFERENCES

  • A. Vipradas, A. Takawale, S. Tripathi, V. Swakul, A. Kaisare, and S. Tonapi, A Parametric Study of a Typical High Power LED Package to Enhance Overall Thermal Performance, Proceedings of the 2012 13th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Itherm), San Diego, CA, 30 May–1 June, 2012.
  • X.Y. Huang, C.Y. Zhi, P.K. Jiang, D. Golberg, Y. Bando, and T. Tanaka, Polyhedral Oligosilsesquioxane-Modified Boron Nitride Nanotube Based Epoxy Nanocomposites: An Ideal Dielectric Material with High Thermal Conductivity, Advanced Functional Materials, Vol. 23, No. 14, pp. 1824–1831, 2013.
  • J. Taha-Tijerina, T.N. Narayanan, G.H. Gao, M. Rohde, D.A. Tsentalovich, M. Pasquali, and P.M. Ajayan, Electrically Insulating Thermal Nano-Oils Using 2D Fillers, ACS Nano, Vol. 6, No. 2, pp. 1214–1220, 2012.
  • Q.Z. Liang, X.X. Yao, W. Wang, Y. Liu, and C.P. Wong, A Three-Dimensional Vertically Aligned Functionalized Multilayer Graphene Architecture: An Approach for Graphene-Based Thermal Interfacial Materials, ACS Nano, Vol. 5, No. 3, pp. 2392–2401, 2011.
  • E. Juntunen, O. Tapaninen, A. Sitomaniemi, and V. Heikkinen, Effect of Phosphor Encapsulant on the Thermal Resistance of a High-Power COB LED Module, IEEE Transactions on Components Packaging and Manufacturing Technology, Vol. 3, No. 7, pp. 1148–1154, 2013.
  • K. Keranen, J.-T. Makinen, M. Heikkinen, M. Hiltunen, M. Koponen, M. Lahti, A. Sunnari, and K. Ronka, Hot Laminated Multilayer Polymer Illumination Structure Based on Embedded LED Chips, IEEE Transactions on Components Packaging and Manufacturing Technology, Vol. 2, No. 12, pp. 1965–1972, 2012.
  • Y.S. Xu and D.D.L. Chung, Increasing the Thermal Conductivity of Boron Nitride and Aluminum Nitride Particle Epoxy-Matrix Composites by Particle Surface Treatments, Composite Interfaces, Vol. 7, No. 4, pp. 243–256, 2000.
  • M. Arik and S. Weaver, Chip Scale Thermal Management of High Brightness LED Packages, in I.T. Ferguson (ed.), Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE), pp. 214–223, 4th International Conference on Solid State Lighting, Denver, CO, 3–6 August, 2004.
  • E.-S. Lee, S.-M. Lee, D.J. Shanefield, and W.R. Cannon, Enhanced Thermal Conductivity of Polymer Matrix Composite via High Solids Loading of Aluminum Nitride in Epoxy Resin, Journal of the American Ceramic Society, Vol. 91, No. 4, pp. 1169–1174, 2008.
  • K.W. Garrett and H.M. Rosenberg, The Thermal Conductivity of Epoxy-Resin/Powder Composite Materials, Journal of Physics D: Applied Physics, Vol. 7, pp. 1247–1258, 1974.
  • R. Kochetov, T. Andritsch, P.H.F. Morshuis, and J.J. Smit, Thermal and Electrical Behaviour of Epoxy-Based Microcomposites Filled with Al(2)O(3) and SiO(2) Particles, Proceedings of the Conference Record of the 2010 IEEE International Symposium on Electrical Insulation, San Diego, CA, 6–9 June, 2010.
  • H. He, R.L. Fu, Y.H. Han, Y. Shen, and X.F. Song, Thermal Conductivity of Ceramic Particle Filled Polymer Composites and Theoretical Predictions, Journal of Materials Science, Vol. 42, No. 16, pp. 6749–6754, 2007.
  • M. Choudhury, S. Mohanty, and S.K. Nayak, Effect of Surface Modification of Aluminum Nitride on Electrical and Thermal Characterizations of Thermosetting Polymeric Nanocomposites, Polymer Composites, Vol. 34, No. 1, pp. 1–14, 2013.
  • Z. Wang, T. Iizuka, M. Kozako, Y. Ohki, and T. Tanaka, Development of Epoxy/BN Composites with High Thermal Conductivity and Sufficient Dielectric Breakdown Strength Part I—Sample Preparations and Thermal Conductivity, IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 18, No. 6, pp. 1963–1972, 2011.
  • K.C. Yung and H. Liem, Enhanced Thermal Conductivity of Boron Nitride Epoxy-Matrix Composite through Multi-Modal Particle Size Mixing, Journal of Applied Polymer Science, Vol. 106, No. 6, pp. 3587–3591, 2007.
  • X. Zeng, S. Yu, and R. Sun, Thermal Behavior and Dielectric Property Analysis of boron Nitride-Filled Bismaleimide-Triazine Resin Composites, Journal of Applied Polymer Science, Vol. 128, No. 3, pp. 1353–1359, 2012.
  • J. Zhu, J.D. Kim, H.Q. Peng, J.L. Margrave, V.N. Khabashesku, and E.V. Barrera, Improving the Dispersion and Integration of Single-Walled Carbon Nanotubes in Epoxy Composites through Functionalization, Nano Letters, Vol. 3, No. 8, pp. 1107–1113, 2003.
  • W. Yu and S.U.S. Choi, The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Hamilton-Crosser Model, Journal of Nanoparticle Research, Vol. 6, No. 4, pp. 355–361, 2004.
  • R.L. Hamilton and O.K. Crosser, Thermal Conductivity of Heterogeneous Two-Component Systems. Industrial and Engineering Chemistry Fundamentals, Vol. 1, pp. 187–191, 1962.
  • T.B. Lewis and L.E. Nielsen, Dynamic Mechanical Properties of Particulate-Filled Composites, Journal of Applied Polymer Science, Vol. 14, No. 6, pp. 1449–1471, 1970.
  • R. Pal, New Models for Thermal Conductivity of Particulate Composites, Journal of Reinforced Plastics and Composites, Vol. 26, No. 7, pp. 643–651, 2007.
  • R. Pal, On the Lewis-Nielsen Model for Thermal/Electrical Conductivity of Composites, Composites Part A - Applied Science and Manufacturing, Vol. 39, No. 5, pp. 718–726, 2008.
  • L.E. Nielsen, Thermal-Conductivity of Particulate-Filled Polymers, Journal of Applied Polymer Science, Vol. 17, No. 12, pp. 3819–3820, 1973.
  • A.K. Roy, B.L. Farmer, V. Varshney, S. Sihn, J. Lee, and S. Ganguli, Importance of Interfaces in Governing Thermal Transport in Composite Materials: Modeling and Experimental Perspectives, ACS Applied Materials & Interfaces, Vol. 4, No. 2, pp. 545–563, 2012.
  • R. Zacharia, H. Ulbricht, and T. Hertel, Interlayer Cohesive Energy of Graphite from Thermal Desorption of Polyaromatic Hydrocarbons, Physical Review B: Condensed Matter, Vol. 69, No. 15, pp. 155406, 2004.
  • R. Prasher, Acoustic Mismatch Model for Thermal Contact Resistance of van der Waals Contacts, Applied Physics Letters, Vol. 94, No. 4, pp. 2009.
  • V. Varshney, S.S. Patnaik, A.K. Roy, G. Froudakis, and B.L. Farmer, Modeling of Thermal Transport in Pillared-Graphene Architectures, ACS Nano, Vol. 4, No. 2, pp. 1153–1161, 2010.
  • J. Yang, Y. Yang, S.W. Waltermire, X.X. Wu, H.T. Zhang, T. Gutu, Y.F. Jiang, Y.F. Chen, A.A. Zinn, P. Prasher, T.T. Xu, D.Y. Li, Enhanced and Switchable Nanoscale Thermal Conduction Due to van der Waals Interfaces, Nature Nanotechnology, Vol. 7, No. 2, pp. 91–95, 2012.
  • S.T. Huxtable, D.G. Cahill, L.P. Xue, R. Ozisik, P. Barone, M. Usrey, M.S. Strano, G. Siddons, M. Shim, and P. Keblinski, Interfacial Heat Flow in Carbon Nanotube Suspensions, Nature Materials, Vol. 2, No. 11, pp. 731–734, 2003.
  • C.J. Yu, A.G. Richter, A. Datta, M.K. Durbin, and P. Dutta, Molecular Layering in a Liquid on a Solid Substrate: An X-ray Reflectivity Study, Physica B, Vol. 283, No. 1–3, pp. 27–31, 2000.
  • W. Yu and S.U.S. Choi, The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model, Journal of Nanoparticle Research, Vol. 5, No. 1–2, pp. 167–171, 2003.
  • V. Varshney, S.S. Patnaik, A.K. Roy, and B.L. Farmer, Modeling of Thermal Conductance at Transverse CNT–CNT Interfaces, Journal of Physical Chemistry C, Vol. 114, No. 39, pp. 16223–16228, 2010.
  • S. Nordholm, J. Gibson, and M.A. Hooper, Generalized van der Waals Theory VIII. An Improved Analysis of the Liquid/Gas Interface, Journal of Statistical Physics, Vol. 28, No. 2, pp. 391–406, 1982.
  • A.K. Roy, B.L. Farmer, V. Varshney, S. Sihn, J. Lee, and S. Ganguli, Importance of Interfaces in Governing Thermal Transport in Composite materials: Modeling and Experimental Perspectives, ACS Applied Materials & Interfaces, Vol. 4, No. 2, pp. 545–563, 2012.
  • P.C. Ma, J.K. Kim, and B.Z. Tang, Effects of Silane Functionalization on the Properties of Carbon Nanotube/Epoxy Nanocomposites, Composites Science and Technology, Vol. 67, No. 14, pp. 2965–2972, 2007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.