1,573
Views
51
CrossRef citations to date
0
Altmetric
Reviews

Two-Dimensional Thermal Transport in Graphene: A Review of Numerical Modeling Studies

, , &
Pages 155-182 | Received 20 Dec 2013, Published online: 14 Apr 2014

REFERENCES

  • K.S. Novoselov, A.K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, and A. Firsov, Electric Field Effect in Atomically Thin Carbon Films, Science, Vol. 306, No. 5696, pp. 666–669, 2004.
  • Y. Zhang, Y.-W. Tan, H.L. Stormer, and P. Kim, Experimental Observation of the Quantum Hall Effect and Berry’s Phase in Graphene, Nature, Vol. 438, No. 7065, pp. 201–204, 2005.
  • J.-C. Charlier, X. Blase, and S. Roche, Electronic and Transport Properties of Nanotubes, Reviews of Modern Physics, Vol. 79, pp. 677–732, 2007.
  • R. Nair, P. Blake, A. Grigorenko, K. Novoselov, T. Booth, T. Stauber, N. Peres, and A. Geim, Fine Structure Constant Defines Visual Transparency of Graphene, Science, Vol. 320, No. 5881, pp. 1308–1308, 2008.
  • Z. Wu, Z. Chen, X. Du, J.M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J.R. Reynolds, D.B. Tanner, A.F. Hebard, and A.G. Rinzler, Transparent, Conductive carbon Nanotube Films, Science, Vol. 305, No. 5688, pp. 1273–1276, 2004.
  • S. Berber, Y.-K. Kwon, and D. Tománek, Unusually High Thermal Conductivity of Carbon Nanotubes, Physical Review Letters, Vol. 84, pp. 4613–4616, 2000.
  • A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau, Superior Thermal Conductivity of Single-Layer Graphene, Nano Letters, Vol. 8, No. 3, pp. 902–907, 2008.
  • C. Lee, X. Wei, J.W. Kysar, and J. Hone, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science, Vol. 321, No. 5887, pp. 385–388, 2008.
  • M.-F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, and R.S. Ruoff, Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes under Tensile Load, Science, Vol. 287, No. 5453, pp. 637–640, 2000.
  • Y.-W. Son, M.L. Cohen, and S.G. Louie, Energy Gaps in Graphene Nanoribbons, Physical Review Letters, Vol. 97, No. 21, p. 216803, 2006.
  • Y.-W. Son, M.L. Cohen, and S.G. Louie, Half-Metallic Graphene Nanoribbons, Nature, Vol. 444, No. 7117, pp. 347–349, 2006.
  • O. Dubay, and G. Kresse, Accurate Density Functional Calculations for the Phonon Dispersion Relations of Graphite Layer and Carbon Nanotubes, Physical Review B, Vol. 67, p. 035401, 2003.
  • C. Oshima, T. Aizawa, R. Souda, Y. Ishizawa, and Y. Sumiyoshi, Surface Phonon Dispersion Curves of Graphite (0001) over the Entire Energy Region, Solid State Communications, Vol. 65, No. 12, pp. 1601–1604, 1988.
  • S. Siebentritt, R. Pues, K.-H. Rieder, and A.M. Shikin, Surface Phonon Dispersion in Graphite and in a Lanthanum Graphite Intercalation Compound, Physical Review B, Vol. 55, pp. 7927–7934, 1997.
  • L. Lindsay, D.A. Broido, and N. Mingo, Flexural Phonons and Thermal Transport in Graphene, Physical Review B, Vol. 82, p. 115427, 2010.
  • L. Lindsay, D.A. Broido, and N. Mingo, Diameter Dependence of Carbon Nanotube Thermal Conductivity and Extension to the Graphene Limit, Physical Review B, Vol. 82, p. 161402, 2010.
  • S. Ghosh, W. Bao, D.L. Nika, S. Subrina, E.P. Pokatilov, C.N. Lau, and A.A. Balandin, Dimensional Crossover of Thermal Transport in Few-Layer Graphene, Nature Materials, Vol. 9, No. 7, pp. 555–558, 2010.
  • S. Ghosh, I. Calizo, D. Teweldebrhan, E.P. Pokatilov, D.L. Nika, A.A. Balandin, W. Bao, F. Miao, and C.N. Lau, Extremely High Thermal Conductivity of Graphene: Prospects for Thermal Management Applications in Nanoelectronic Circuits, Applied Physics Letters, Vol. 92, No. 15, p. 151911, 2008.
  • S. Chen, A.L. Moore, W. Cai, J.W. Suk, J. An, C. Mishra, C. Amos, C.W. Magnuson, J. Kang, L. Shi, and R.S. Ruoff, Raman Measurements of Thermal Transport in Suspended Monolayer Graphene of Variable Sizes in Vacuum and Gaseous Environments, ACS Nano, Vol. 5, No. 1, pp. 321–328, 2010.
  • C. Faugeras, B. Faugeras, M. Orlita, M. Potemski, R.R. Nair, and A. Geim, Thermal Conductivity of Graphene in Corbino Membrane Geometry, Acs Nano, Vol. 4, No. 4, pp. 1889–1892, 2010.
  • J.H. Seol, I. Jo, A.L. Moore, L. Lindsay, Z.H. Aitken, M.T. Pettes, X. Li, Z. Yao, R. Huang, D. Broido, N. Mingo, and L. Shi, Two-Dimensional Phonon Transport in Supported Graphene, Science, Vol. 328, No. 5975, pp. 213–216, 2010.
  • W. Cai, A.L. Moore, Y. Zhu, X. Li, S. Chen, L. Shi, and R.S. Ruoff, Thermal Transport in Suspended and Supported Monolayer Graphene Grown by Chemical Vapor Deposition, Nano Letters, Vol. 10, No. 5, pp. 1645–1651, 2010.
  • M.M. Sadeghi, M.T. Pettes, and L. Shi, Thermal Transport in Graphene, Solid State Communications, Vol. 152, No. 15, pp. 1321–1330, 2012.
  • C. Chang, D. Okawa, A. Majumdar, and A. Zettl, Solid-State Thermal Rectifier, Science, Vol. 314, No. 5802, pp. 1121–1124, 2006.
  • L. Lindsay, D. Broido, and N. Mingo, Flexural Phonons and Thermal Transport in Multilayer Graphene and Graphite, Physical Review B, Vol. 83, No. 23, p. 235428, 2011.
  • M. Alaghemandi, E. Algaer, M.C. Böhm, and F. Müller-Plathe, The Thermal Conductivity and Thermal Rectification of Carbon Nanotubes Studied Using Reverse Non-Equilibrium Molecular Dynamics Simulations, Nanotechnology, Vol. 20, No. 11, p. 115704, 2009.
  • B. Qiu, Y. Wang, Q. Zhao, and X. Ruan, The Effects of Diameter and Chirality on the Thermal Transport in Free-Standing and Supported Carbon-Nanotubes, Applied Physics Letters, Vol. 100, No. 23, p. 233105, 2012.
  • M.-H. Bae, Z. Li, Z. Aksamija, P.N. Martin, F. Xiong, Z.-Y. Ong, I. Knezevic, and E. Pop, Ballistic to Diffusive Crossover of Heat Flow in Graphene Ribbons, Nature Communications, Vol. 4, pp. 1734–1741, 2013.
  • Z.W. Tan, J.-S. Wang, and C.K. Gan, First-Principles Study of Heat Transport Properties of Graphene Nanoribbons, Nano Letters, Vol. 11, No. 1, pp. 214–219, 2011.
  • Y. Wang, B. Qiu, and X. Ruan, Edge Effect on Thermal Transport in Graphene Nanoribbons: A Phonon Localization Mechanism beyond Edge Roughness Scattering, Applied Physics Letters, Vol. 101, No. 1, p. 013101, 2012.
  • J. Haskins, A. Knac, C. Sevik, H. Sevincli, G. Cuniberti, and T. Çağin, Control of Thermal and Electronic Transport in Defect-Engineered Graphene Nanoribbons, ACS Nano, Vol. 5, No. 5, pp. 3779–3787, 2011.
  • Z. Aksamija, and I. Knezevic, Lattice Thermal Conductivity of Graphene Nanoribbons: Anisotropy and Edge Roughness Scattering, Applied Physics Letters, Vol. 98, No. 14, p. 141919, 2011.
  • D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price, and J.M. Tour, Longitudinal Unzipping of Carbon Nanotubes to Form Graphene Nanoribbons, Nature, Vol. 458, No. 7240, pp. 872–876, 2009.
  • Y. Jiang, H. Li, Y. Li, H. Yu, K.M. Liew, Y. He, and X. Liu, Helical Encapsulation of Graphene Nanoribbon into Carbon Nanotube, ACS Nano, Vol. 5, No. 3, pp. 2126–2133, 2011.
  • A. Casher, and J.L. Lebowitz, Heat Flow in Regular and Disordered Harmonic Chains, Journal of Mathematical Physics, Vol. 12, No. 8, pp. 1701–1711, 1971.
  • R.J. Rubin, and W.L. Greer, Abnormal Lattice Thermal Conductivity of a One-Dimensional, Harmonic, Isotopically Disordered Crystal, Journal of Mathematical Physics, Vol. 12, No. 8, pp. 1686–1701, 1971.
  • L.W. Lee, and A. Dhar, Heat Conduction in a Two-Dimensional Harmonic Crystal with Disorder, Physical Review Letters, Vol. 95, p. 094302, 2005.
  • P.K. Schelling, S.R. Phillpot, and P. Keblinski, Comparison of Atomic-Level Simulation Methods for Computing Thermal Conductivity, Physical Review B, Vol. 65, p. 144306, 2002.
  • F. Müller-Plathe, A Simple Nonequilibrium Molecular Dynamics Method for Calculating the Thermal Conductivity, The Journal of Chemical Physics, Vol. 106, No. 14, pp. 6082–6085, 1997.
  • L. Hu, T. Desai, and P. Keblinski, Determination of Interfacial Thermal Resistance at the Nanoscale, Physical Review B, Vol. 83, No. 19, p. 195423, 2011.
  • P. Schelling, S. Phillpot, and P. Keblinski, Phonon Wave-Packet Dynamics at Semiconductor Interfaces by Molecular-Dynamics Simulation, Applied Physics Letters, Vol. 80, No. 14, pp. 2484–2486, 2002.
  • A.J.H. McGaughey, and M. Kaviany, Quantitative Validation of the Boltzmann Transport Equation Phonon Thermal Conductivity Model under the Single-Mode Relaxation Time Approximation, Physical Review B, Vol. 69, p. 094303, 2004.
  • A.S. Henry, and G. Chen, Spectral Phonon Transport Properties of Silicon Based on Molecular Dynamics Simulations and Lattice Dynamics, Journal of Computational and Theoretical Nanoscience, Vol. 5, No. 2, pp. 141–152, 2008.
  • R. Car, and M. Parrinello, Unified Approach for Molecular Dynamics and Density-Functional Theory, Physical Review Letters, Vol. 55, pp. 2471–2474, 1985.
  • M. Pozzo, C. Davies, D. Gubbins, and D. Alfè, Thermal and Electrical Conductivity of Iron at Earth’s Core Conditions, Nature, Vol. 485, No. 7398, pp. 355–358, 2012.
  • T. Gibbons, By. Kang, S. Estreicher, and C. Carbogno, Thermal Conductivity of Si Nanostructures Containing Defects: Methodology, Isotope Effects, and Phonon Trapping, Physical Review B, Vol. 84, No. 3, p. 035317, 2011.
  • V.K. Tewary, and B. Yang, Singular Behavior of the Debye-Waller Factor of Graphene, Physical Review B, Vol. 79, p. 125416, 2009.
  • C. Oligschleger, and J. Schön, Simulation of Thermal Conductivity and Heat Transport in Solids, Physical Review B, Vol. 59, No. 6, pp. 4125–4133, 1999.
  • M. Kaviany, Heat Transfer Physics, Cambridge University Press, Cambridge, UK, 2008.
  • A. McGaughey, and M. Kaviany, Thermal Conductivity Decomposition and Analysis Using Molecular Dynamics Simulations. Part I. Lennard-Jones Argon, International Journal of Heat and Mass Transfer, Vol. 47, No. 8, pp. 1783–1798, 2004.
  • H. Kaburaki, J. Li, and S. Yip, Thermal Conductivity of Solid Argon by Classical Molecular Dynamics, Materials Research Society Symposium Proceedings, in eds. V. Bulatov, N.M. Ghoniem, T. Kaxiras, R. Phillips, T. Diaz de la Rubia, Vol. 538, Cambridge University Press, New York, pp. 503–508, 1999.
  • P.C. Howell, Comparison of Molecular Dynamics Methods and Interatomic Potentials for Calculating the Thermal Conductivity of Silicon, The Journal of Chemical Physics, Vol. 137, No. 22, p. 224111, 2012.
  • K. Esfarjani, G. Chen, and H.T. Stokes, Heat Transport in Silicon from First-Principles Calculations, Physical Review B, Vol. 84, No. 8, p. 085204, 2011.
  • A. McGaughey, Predicting Phonon Properties from Equilibrium Molecular Dynamics Simulations, Annual Review of Heat Transfer , Vol. 17, to appear.
  • A.J.C. Ladd, B. Moran, and W.G. Hoover, Lattice Thermal Conductivity: A Comparison of Molecular Dynamics and Anharmonic Lattice Dynamics, Physical Review B, Vol. 34, pp. 5058–5064, 1986.
  • N. de Koker, Thermal Conductivity of MgO Periclase from Equilibrium First Principles Molecular Dynamics, Physical Review Letters, Vol. 103, p. 125902, 2009.
  • W. Zhang, T.S. Fisher, and N. Mingo, The Atomistic Green’s Function Method: An Efficient Simulation Approach for Nanoscale Phonon Transport, Numerical Heat Transfer, Part B: Fundamentals, Vol. 51, No. 4, pp. 333–349, 2007.
  • J.-S. Wang, B.K. Agarwalla, H. Li, and J. Thingna, Nonequilibrium Green’s Function Method for Quantum Thermal Transport, Frontiers of Physics, pp. 1–24, 2013.
  • J. Lan, J.-S. Wang, C.K. Gan, and S.K. Chin, Edge Effects on Quantum Thermal Transport in Graphene Nanoribbons: Tight-Binding Calculations, Physical Review B, Vol. 79, p. 115401, 2009.
  • J. Wang, L. Li, and J.-S. Wang, Tuning Thermal Transport in Nanotubes with Topological Defects, Applied Physics Letters, Vol. 99, No. 9, p. 091905, 2011.
  • N. Mingo, Anharmonic Phonon Flow through Molecular-Sized Junctions, Physical Review B, Vol. 74, p. 125402, 2006.
  • G.P. Srivastava, The Physics of Phonons, Taylor & Francis Group, 1990.
  • M. Omini, and A. Sparavigna, An Iterative Approach to the Phonon Boltzmann Equation in the Theory of Thermal Conductivity, Physica B: Condensed Matter, Vol. 212, No. 2, pp. 101–112, 1995.
  • L. Lindsay, D. Broido, and N. Mingo, Lattice Thermal Conductivity of Single-Walled Carbon Nanotubes: Beyond the Relaxation Time Approximation and Phonon-Phonon Scattering Selection Rules, Physical Review B, Vol. 80, No. 12, p. 125407, 2009.
  • J. Tersoff, New Empirical Approach for the Structure and Energy of Covalent Systems, Physical Review B, Vol. 37, No. 12, pp. 6991–7000, 1988.
  • J. Tersoff, Modeling Solid-State Chemistry: Interatomic Potentials for Multicomponent Systems, Physical Review B, Vol. 39, No. 8, pp. 5566–5568, 1989.
  • S.J. Stuart, A.B. Tutein, and J.A. Harrison, A Reactive Potential for Hydrocarbons with Intermolecular Interactions, The Journal of Chemical Physics, Vol. 112, No. 14, pp. 6472–6486, 2000.
  • D.W. Brenner, O.A. Shenderova, J.A. Harrison, S.J. Stuart, B. Ni, and S.B. Sinnott, A Second-Generation Reactive Empirical Bond Order (Rebo) Potential Energy Expression for Hydrocarbons, Journal of Physics: Condensed Matter, Vol. 14, No. 4, pp. 783–802, 2002.
  • L. Lindsay, and D.A. Broido, Optimized Tersoff and Brenner Empirical Potential Parameters for Lattice Dynamics and Phonon Thermal Transport in Carbon Nanotubes and Graphene, Physical Review B, Vol. 81, p. 205441, 2010.
  • R. Nicklow, N. Wakabayashi, and H.G. Smith, Lattice Dynamics of Pyrolytic Graphite, Physical Review B, Vol. 5, pp. 4951–4962, 1972.
  • L.A. Girifalco, M. Hodak, and R.S. Lee, Carbon Nanotubes, Buckyballs, Ropes, and a Universal Graphitic Potential, Physical Review B, Vol. 62, pp. 13104–13110, 2000.
  • M.H. Khadem, and A.P. Wemhoff, Molecular Dynamics Predictions of the Influence of Graphite Stacking Arrangement on the Thermal Conductivity Tensor, Chemical Physics Letters, Vol. 574, pp. 78–82, 2013.
  • J.A. Thomas, R.M. Iutzi, and A.J.H. McGaughey, Thermal Conductivity and Phonon Transport in Empty and Water-Filled Carbon Nanotubes, Physical Review B, Vol. 81, p. 045413, 2010.
  • W.J. Evans, L. Hu, and P. Keblinski, Thermal Conductivity of Graphene Ribbons from Equilibrium Molecular Dynamics: Effect of Ribbon Width, Edge Roughness, and Hydrogen Termination, Applied Physics Letters, Vol. 96, No. 20, p. 203112, 2010.
  • B. Qiu, and X. Ruan, Mechanism of Thermal Conductivity Reduction from Suspended to Supported Graphene: a Quantitative Spectral Analysis of Phonon Scattering, ASME 2011 International Mechanical Engineering Congress and Exposition, 11–17 November, Denver, CO, pp. 303–313.
  • D.L. Nika, E.P. Pokatilov, A.S. Askerov, and A.A. Balandin, Phonon thermal conduction in graphene: Role of umklapp and edge roughness scattering, Phys. Rev. B, Vol. 79, p. 155413, 2009.
  • D. Singh, J.Y. Murthy, and T.S. Fisher, Spectral Phonon Conduction and Dominant Scattering Pathways in Graphene, Journal of Applied Physics, Vol. 110, No. 9, p. 094312, 2011.
  • B. Qiu, and X. Ruan, Reduction of Spectral Phonon Relaxation Times from Suspended to Supported Graphene, Applied Physics Letters, Vol. 100, No. 19, p. 193101, 2012.
  • L. Chen, and S. Kumar, Thermal Transport in Graphene Supported on Copper, Journal of Applied Physics, Vol. 112, No. 4, p. 043502, 2012.
  • A. Alofi, and G.P. Srivastava, Phonon Conductivity in Graphene, Journal of Applied Physics, Vol. 112, No. 1, p. 013517, 2012.
  • Z. Guo, D. Zhang, and X.-G. Gong, Thermal Conductivity of Graphene Nanoribbons, Applied Physics Letters, Vol. 95, No. 16, p. 163103, 2009.
  • J. Chen, G. Zhang, and B. Li, Substrate Coupling Suppresses Size Dependence of Thermal Conductivity in Supported Graphene, Nanoscale, Vol. 5, No. 2, pp. 532–536, 2012.
  • C. Yu, and G. Zhang, Impacts of Length and Geometry Deformation on Thermal Conductivity of Graphene Nanoribbons, Journal of Applied Physics, Vol. 113, No. 4, p. 044306, 2013.
  • A. Selezenev, A.Y. Aleinikov, N. Ganchuk, S. Ganchuk, R. Jones, and J. Zimmerman, Molecular Dynamics Calculation of the Thermal Conductivity Coefficient of Single-Layer and Multilayer Graphene Sheets, Physics of the Solid State, Vol. 55, No. 4, pp. 889–894, 2013.
  • Z.-Y. Ong, and E. Pop, Effect of Substrate Modes on Thermal Transport in Supported Graphene, Physical Review B, Vol. 84, No. 7, p. 075471, 2011.
  • Z. Wei, Z. Ni, K. Bi, M. Chen, and Y. Chen, In-Plane Lattice Thermal Conductivities of Multilayer Graphene Films, Carbon, Vol. 49, No. 8, pp. 2653–2658, 2011.
  • P. Klemens, Theory of the A-Plane Thermal Conductivity of Graphite, Journal of Wide Bandgap Materials, Vol. 7, No. 4, pp. 332–339, 2000.
  • W.-R. Zhong, M.-P. Zhang, B.-Q. Ai, and D.-Q. Zheng, Chirality and Thickness-Dependent Thermal Conductivity of Few-Layer Graphene: A Molecular Dynamics Study, Applied Physics Letters, Vol. 98, No. 11, p. 113107, 2011.
  • M.H. Khadem, and A.P. Wemhoff, Thermal Conductivity Predictions of Herringbone Graphite Nanofibers Using Molecular Dynamics Simulations, The Journal of Chemical Physics, Vol. 138, No. 8, p. 084708, 2013.
  • D. Singh, J.Y. Murthy, and T.S. Fisher, Mechanism of Thermal Conductivity Reduction in Few-Layer Graphene, Journal of Applied Physics, Vol. 110, No. 4, p. 044317, 2011.
  • G. Zhang, and B. Li, Thermal Conductivity of Nanotubes Revisited: Effects of Chirality, Isotope Impurity, Tube Length, and Temperature, The Journal of Chemical Physics, Vol. 123, No. 11, p. 114714, 2005.
  • J. Shiomi, and S. Maruyama, Molecular Dynamics of Diffusive-Ballistic Heat Conduction in Single-Walled Carbon Nanotubes, Japanese Journal of Applied Physics-Part 1 Regular Papers and Short Notes, Vol. 47, No. 4, pp. 2005–2009, 2008.
  • J. Hu, X. Ruan, and Y.P. Chen, Thermal Conductivity and Thermal Rectification in Graphene Nanoribbons: a Molecular Dynamics Study, Nano Letters, Vol. 9, No. 7, pp. 2730–2735, 2009.
  • Y. Xu, X. Chen, B.-L. Gu, and W. Duan, Intrinsic Anisotropy of Thermal Conductance in Graphene Nanoribbons, Applied Physics Letters, Vol. 95, No. 23, p. 233116, 2009.
  • Z. Wei, Y. Chen, and C. Dames, Wave Packet Simulations of Phonon Boundary Scattering at Graphene Edges, Journal of Applied Physics, Vol. 112, No. 2, pp. 024328–024328, 2012.
  • S. Chen, Q. Wu, C. Mishra, J. Kang, H. Zhang, K. Cho, W. Cai, A.A. Balandin, and R.S. Ruoff, Thermal Conductivity of Isotopically Modified Graphene, Nature Materials, Vol. 11, No. 3, pp. 203–207, 2012.
  • J. Hu, S. Schiffli, A. Vallabhaneni, X. Ruan, and Y.P. Chen, Tuning the Thermal Conductivity of Graphene Nanoribbons by Edge Passivation and Isotope Engineering: A Molecular Dynamics Study, Applied Physics Letters, Vol. 97, No. 13, p. 133107, 2010.
  • Z.G. Fthenakis, and D. Tománek, Computational Study of the Thermal Conductivity in Defective Carbon Nanostructures, Physical Review B, Vol. 86, No. 12, p. 125418, 2012.
  • D. Dragoman, and M. Dragoman, Giant Thermoelectric Effect in Graphene, Applied Physics Letters, Vol. 91, No. 20, p. 203116, 2007.
  • H. Sevinçli, C. Sevik, T. Çağin, and G. Cuniberti, A Bottom-Up Route to Enhance Thermoelectric Figures of Merit in Graphene Nanoribbons, Scientific reports, Vol. 3, p. 1228, 2013.
  • G. Stoltz, N. Mingo, and F. Mauri, Reducing the Thermal Conductivity of Carbon Nanotubes below the Random Isotope Limit, Physical Review B, Vol. 80, p. 113408, 2009.
  • R.S. Prasher, X.J. Hu, Y. Chalopin, N. Mingo, K. Lofgreen, S. Volz, F. Cleri, and P. Keblinski, Turning Carbon Nanotubes from Exceptional Heat Conductors into Insulators, Physical Review Letters, Vol. 102, p. 105901, 2009.
  • H. Zhang, G. Lee, A.F. Fonseca, T.L. Borders, and K. Cho, Isotope Effect on the Thermal Conductivity of Graphene, Journal of Nanomaterials, Vol. 2010, p. 537657, 2010.
  • X. Li, J. Chen, C. Yu, and G. Zhang, Comparison of Isotope Effects on Thermal Conductivity of Graphene Nanoribbons and Carbon Nanotubes, Applied Physics Letters, Vol. 103, No. 1, p. 013111, 2013.
  • J.-W. Jiang, J. Lan, J.-S. Wang, and B. Li, Isotopic Effects on the Thermal Conductivity of Graphene Nanoribbons: Localization Mechanism, Journal of Applied Physics, Vol. 107, No. 5, p. 054314, 2010.
  • A.Y. Serov, Z.-Y. Ong, and E. Pop, Effect of Grain Boundaries on Thermal Transport in Graphene, Applied Physics Letters, Vol. 102, No. 3, p. 033104, 2013.
  • A. Cao, and J. Qu, Kapitza Conductance of Symmetric Tilt Grain Boundaries in Graphene. Journal of Applied Physics, Vol. 111, No. 5, p. 053529, 2012.
  • A. Bagri, S.-P. Kim, R.S. Ruoff, and V.B. Shenoy, Thermal Transport across Twin Grain Boundaries in Polycrystalline Graphene from Nonequilibrium Molecular Dynamics Simulations, Nano Letters, Vol. 11, No. 9, pp. 3917–3921, 2011.
  • Z.-Y. Ong, E. Pop, B. Qiu, and X. Ruan, A Flexural Resonance Mechanism in Graphene-SiO2 Interfacial Thermal Transport, unpublished.
  • B. Persson, and H. Ueba, Heat Transfer between Graphene and Amorphous SiO2, Journal of Physics: Condensed Matter, Vol. 22, No. 46, p. 462201, 2010.
  • A.K. Vallabhaneni, B. Qiu, J. Hu, Y.P. Chen, A.K. Roy, and X. Ruan, Interfacial Thermal Conductance Limit and Thermal Rectification across Vertical Carbon Nanotube/Graphene Nanoribbon–Silicon Interfaces, Journal of Applied Physics, Vol. 113, No. 6, pp. 064311–064311, 2013.
  • P.A. Khomyakov, G. Giovannetti, P.C. Rusu, G. Brocks, J. van den Brink, and P.J. Kelly, First-Principles Study of the Interaction and Charge Transfer between Graphene and Metals, Physical Review B, Vol. 79, p. 195425, 2009.
  • R. Mao, B.D. Kong, C. Gong, S. Xu, T. Jayasekera, K. Cho, and K.W. Kim, First-Principles Calculation of Thermal Transport in Metal/Graphene Systems. Physical Review B, Vol. 87, p. 165410, 2013.
  • B.A. Cola, J. Xu, C. Cheng, X. Xu, T.S. Fisher, and H. Hu, Photoacoustic Characterization of Carbon Nanotube Array Thermal Interfaces, Journal of Applied Physics, Vol. 101, No. 5, p. 054313, 2007.
  • M.A. Panzer, H.M. Duong, J. Okawa, J. Shiomi, B.L. Wardle, S. Maruyama, and K.E. Goodson, Temperature-Dependent Phonon Conduction and Nanotube Engagement in Metalized Single Wall Carbon Nanotube Films, Nano Letters, Vol. 10, No. 7, pp. 2395–2400, 2010.
  • D. Wang, M.T. Carlson, and H.H. Richardson, Absorption Cross Section and Interfacial Thermal Conductance from an Individual Optically Excited Single-Walled Carbon Nanotube, ACS Nano, Vol. 5, No. 9, pp. 7391–7396, 2011.
  • S. Shin, and M. Kaviany, Interflake Thermal Conductance of Edge-Passivated Graphene, Physical Review B, Vol. 84, p. 235433, 2011.
  • L. Hu, T. Desai, and P. Keblinski, Thermal Transport in Graphene-Based Nanocomposite, Journal of Applied Physics, Vol. 110, No. 3, p. 033517, 2011.
  • V. Varshney, S.S. Patnaik, A.K. Roy, G. Froudakis, and B.L. Farmer, Modeling of Thermal Transport in Pillared-Graphene Architectures, ACS Nano, Vol. 4, No. 2, pp. 1153–1161, 2010.
  • J. Lee, V. Varshney, J.S. Brown, A.K. Roy, and B.L. Farmer, Single Mode Phonon Scattering at Carbon Nanotube-Graphene Junction in Pillared Graphene Structure, Applied Physics Letters, Vol. 100, No. 18, p. 183111, 2012.
  • A. Majumdar, and P. Reddy, Role of Electron–Phonon Coupling in Thermal Conductance of Metal–Nonmetal Interfaces, Applied Physics Letters, Vol. 84, No. 23, pp. 4768–4770, 2004.
  • Y. Wang, X. Ruan, and A.K. Roy, Two-Temperature Nonequilibrium Molecular Dynamics Simulation of Thermal Transport across Metal-Nonmetal Interfaces, Physical Review B, Vol. 85, p. 205311, 2012.
  • X. Li, B.D. Kong, J.M. Zavada, and K.W. Kim, Strong Substrate Effects of Joule Heating in Graphene Electronics, Applied Physics Letters, Vol. 99, No. 23, p. 233114, 2011.
  • J. Hu, Y. Wang, A. Vallabhaneni, X. Ruan, and Y.P. Chen, Nonlinear Thermal Transport and Negative Differential Thermal Conductance in Graphene Nanoribbons, Applied Physics Letters, Vol. 99, No. 11, p. 113101, 2011.
  • B. Li, L. Wang, and G. Casati, Thermal Diode: Rectification of Heat Flux, Physical Review Letters, Vol. 93, p. 184301, 2004.
  • Y. Wang, A. Vallabhaneni, J. Hu, B. Qiu, Y.P. Chen, and X. Ruan, Phonon Lateral Confinement Enables Thermal Rectification in Asymmetric Single-Material Nanostructures, Nano Letters, Vol. 14, No. 2, pp. 592–596.
  • C. Starr, The Copper Oxide Rectifier, Physics, Vol. 7, No. 1, pp. 15–19, 1936.
  • M. Alaghemandi, F. Leroy, E. Algaer, M.C. Böhm, and F. Müller-Plathe, Thermal Rectification in Mass-Graded Nanotubes: a Model Approach in the Framework of Reverse Non-Equilibrium Molecular Dynamics Simulations, Nanotechnology, Vol. 21, No. 7, p. 075704, 2010.
  • N. Yang, G. Zhang, and B. Li, Thermal Rectification in Asymmetric Graphene Ribbons, Applied Physics Letters, Vol. 95, No. 3, pp. 033107–033107, 2009.
  • G. Wu, and B. Li, Thermal Rectifiers from Deformed Carbon Nanohorns, Journal of Physics: Condensed Matter, Vol. 20, No. 17, p. 175211, 2008.
  • G. Wu, and B. Li, Thermal Rectification in Carbon Nanotube Intramolecular Junctions: Molecular Dynamics Calculations, Physical Review B, Vol. 76, p. 085424, 2007.
  • N. Yang, G. Zhang, and B. Li, Carbon Nanocone: a Promising Thermal Rectifier, Applied Physics Letters, Vol. 93, No. 24, pp. 243111–243111, 2008.
  • Y. Wang, S. Chen, and X. Ruan, Tunable Thermal Rectification in Graphene Nanoribbons Through Defect Engineering: A Molecular Dynamics Study, Applied Physics Letters, Vol. 100, No. 16, pp. 163101–163101, 2012.
  • Q.-X. Pei, Y.-W. Zhang, Z.-D. Sha, and V.B. Shenoy, Carbon Isotope Doping Induced Interfacial Thermal Resistance and Thermal Rectification in Graphene, Applied Physics Letters, Vol. 100, No. 10, pp. 101901–101901, 2012.
  • K. Bui, H. Nguyen, C. Cousin, A. Striolo, and D.V. Papavassiliou, Thermal Behavior of Double-Walled Carbon Nanotubes and Evidence of Thermal Rectification, The Journal of Physical Chemistry C, Vol. 116, No. 7, pp. 4449–4454, 2012.
  • K. Gordiz, S. Vaez Allaei, and F. Kowsary, Thermal Rectification in Multi-Walled Carbon Nanotubes: A Molecular Dynamics Study, Applied Physics Letters, Vol. 99, No. 25, pp. 251901–251901, 2011.
  • A. Rajabpour, S. Vaez Allaei, and F. Kowsary, Interface Thermal Resistance and Thermal Rectification in Hybrid Graphene-Graphane Nanoribbons: A Nonequilibrium Molecular Dynamics Study, Applied Physics Letters, Vol. 99, No. 5, pp. 051917–051917, 2011.
  • K.G.S.H. Gunawardana, K. Mullen, J. Hu, Y.P. Chen, and X. Ruan, Tunable Thermal Transport and Thermal Rectification in Strained Graphene Nanoribbons, Physical Review B, Vol. 85, p. 245417, 2012.
  • B.-Q. Ai, W.-R. Zhong, and B. Hu, Dimension Dependence of Negative Differential Thermal Resistance in Graphene Nanoribbons, The Journal of Physical Chemistry C, Vol. 116, No. 25, pp. 13810–13815, 2012.
  • The Nobel Prize in Chemistry, Nobel Media AB 2013. Web. 19 Mar 2014, available at http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2013/.
  • T.M. Gibbons, and S.K. Estreicher, Impact of Impurities on the Thermal Conductivity of Semiconductor Nanostructures: First-Principles Theory, Physical Review Letters, Vol. 102, p. 255502, 2009.
  • T. Luo, and J.R. Lloyd, Ab Initio Molecular Dynamics Study of Nanoscale Thermal Energy Transport, Journal of Heat Transfer, Vol. 130, No. 12, p. 122403, 2008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.