2,705
Views
47
CrossRef citations to date
0
Altmetric
Articles

Electric Field–Based Control and Enhancement of Boiling and Condensation

, , , &
Pages 102-121 | Received 01 Sep 2016, Accepted 24 Oct 2016, Published online: 18 Dec 2016

References

  • S. Bigham and S. Moghaddam, Microscale Study of Mechanisms of Heat Transfer during Flow Boiling in a Microchannel, International Journal of Heat and Mass Transfer, Vol. 88, pp. 111–121, 2011.
  • H.-S. Roh, Heat Transfer Mechanisms in Pool Boiling, International Journal of Heat and Mass Transfer, Vol. 68, pp. 332–342, 2014.
  • R. Mahmoudi, K. Adamiak, and G.S.P. Castle, Two-Phase Cooling Characteristics of Mono-Dispersed Droplets Impacted on an Upward-Facing Heated Disk, Experimental Thermal and Fluid Science, Vol. 44, pp. 312–322, 2013.
  • M.T. Kivisalu, P. Gorgitrattanagul, and A. Narain, Results for High Heat-Flux Flow Realizations in Innovative Operations of Milli-Meter Scale Condensers and Boilers, International Journal of Heat and Mass Transfer, Vol. 75, pp. 381–398, 2014.
  • P.-S. Lee, S.V. Garimella, and D. Liu, Investigation of Heat Transfer in Rectangular Microchannels, International Journal of Heat Mass Transfer, Vol. 48, pp. 1688–1704, 2005.
  • T. Bergman, A.S. Lavine, F.P. Incropera, and D.P. Dewitt, Fundamentals of Heat and Mass Transfer, 7th ed., New York, NY: John Wiley & Sons, 2011.
  • R. Raj and J. Kim, Heater Size and Gravity Based Pool Boiling Regime Map: Transition Criteria Between Buoyancy and Surface Tension Dominated Boiling, Journal of Heat Transfer, Vol. 132, p. 091503. 2010.
  • V. Carey, Liquid Vapor Phase Change Phenomena, 2nd ed., Taylor & Francis, Washington, DC, 2007.
  • D. Liu, P.-S. Lee, and S. Garimella, Prediction of the Onset of Nucleate Boiling in Microchannel Flow, International Journal of Heat and Mass Transfer, Vol. 48, pp. 5134–5149, 2005.
  • P. Vassallo, R. Kumar, and S. D’Amico, Pool Boiling Heat Transfer Experiments in Silica–Water Nano-Fluids, International Journal of Heat and Mass Transfer, Vol. 47, pp. 407–411, 2004.
  • V.K. Dhir, Boiling Heat Transfer, Annual Review Fluid Mechanics, Vol. 30, pp. 365–401, 1998.
  • M. Rahman, J. Pollack, and M. McCarthy, Increasing Boiling Heat Transfer Using Low Conductivity Materials, Scientific Reports, Vol. 5, p. 13145, 2015.
  • M. Rahman, E. Olceroglu, and M. McCarthy, Role of Wickability on the Critical Heat Flux of Structured Superhydrophilic Surfaces, Langmuir, Vol. 30, pp. 11225–11234, 2014.
  • K.J.L. Geisler and A. Bar-Cohen, Confinement Effects on Nucleate Boiling and Critical Heat Flux in Buoyancy-Driven Microchannels, International Journal of Heat and Mass Transfer, Vol. 52, pp. 2427–2436, 2009.
  • G. Son and V.K. Dhir, Numerical Simulation of Nucleate Boiling on a Horizontal Surface at High Heat Fluxes, International Journal of Heat and Mass Transfer, Vol. 51, pp. 2566–2582, 2008.
  • M. Arik and A. Bar-Cohen, Effusivity-Based Correlation of Surface Property Effects in Pool Boiling CHF of Dielectric Liquids, International Journal of Heat and Mass Transfer, Vol. 46, 3755–3764, 2003.
  • N. Basu, G.R. Warrier, and V.K. Dhir, Onset of Nucleate Boiling and Active Nucleation Site Density during Subcooled Flow Boiling, Journal of Heat Transfer, Vol. 124, pp. 717–728, 2002.
  • M. Arik, A. Kosar, H. Bostanci, and A. Bar-Cohen, Pool Boiling Critical Heat Flux in Dielectric Liquids and Nanofluids, Advances in Heat Transfer, Vol. 43, pp. 1–76, 2011.
  • X. Fang, Y. Chen, H. Zhang, W. Chen, A. Dong, and R. Wang, Heat Transfer and Critical Heat Flux of Nanofluid Boiling: A Comprehensive Review, Renewable and Sustainable Energy Reviews, Vol. 62, pp. 924–940, 2016.
  • C. Konishi and I. Mudawar, Review of Flow Boiling and Critical Heat Flux in Microgravity, International Journal of Heat and Mass Transfer, Vol. 80, pp. 469–493, 2015.
  • D.E. Kim, D.I. Yu, D.W. Jerng, M.H. Kim, and H.S. Ahn, Review of Boiling Heat Transfer Enhancement on Micro/Nanostructured Surfaces, Experimental Thermal and Fluid Science, Vol. 66, pp. 173–196, 2015.
  • V.K. Dhir, G.R. Warrier, and E. Aktinol, Numerical Simulation of Pool Boiling: A Review, Journal of Heat Transfer, Vol. 135, pp. 061502-1–061502-17, 2013.
  • S.M. Sohel Murshed, C.A. Nieto de Castro, M.J.V. Lourenco, M.L.M. Lopes, and F.J.V. Santos, A Review of Boiling and Convective Heat Transfer with Nanofluids, Renewable and Sustainable Energy Reviews, Vol. 15, pp. 2342–2354, 2011.
  • J. Kim, Review of Nucleate Pool Boiling Bubble Heat Transfer Mechanisms, International Journal of Multiphase Flow, Vol. 35, 1067–1076, 2009.
  • I.L. Pioro, W. Rohsenow, and S.S. Doerffer, Nucleate Pool-Boiling Heat Transfer. I: Review of Parametric Effects of Boiling Surface, International Journal of Heat and Mass Transfer, Vol. 47, pp. 5033–5044, 2004.
  • H. O’Hanley, C. Coyle, J. Buongiorno, T. McKrell, L.-W. Hu, M. Rubner, and R. Cohen, Separate Effects of Surface Roughness, Wettability, and Porosity on the Boiling Critical Heat Flux, Applied Physics Letters, Vol. 103, p. 024102, 2013.
  • A. Adera, R. Raj, R. Enright, and E.N. Wang, Non-Wetting Droplets in Hot Superhydrophilic Surfaces, Nature Communications, Vol. 4, pp. 2518, 2013.
  • H.M. Kwon, J.C. Bird, and K.K. Varanasi, Increasing Leidenfrost Point Using Micro–Nano Hierarchical Surface Structures, Applied Physics Letters, Vol. 103, p. 201601, 2013.
  • K.-H. Chu, Y.S. Joung, R. Enright, C.R. Buie, and E.N. Wang, Hierarchically Structured Surfaces for Boiling Critical Heat Flux Enhancement, Applied Physics Letters, Vol. 102, p. 151602, 2013.
  • A. Zou and S.C. Maroo, Critical Height of Micro/Nano Structures for Pool Boiling Heat Transfer Enhancement, Applied Physics Letters, Vol. 103, p. 221602, 2013.
  • K-H. Chu, R. Enright, and E.N. Wang, Structured Surfaces for Enhanced Pool Boiling Heat Transfer, Applied Physics Letters, Vol. 100, p. 241603, 2012.
  • D. Cooke and S.G. Kandlikar, Effect of Open Microchannel Geometry on Pool Boiling Enhancement, International Journal of Heat and Mass Transfer, Vol. 55, pp. 1004–1013, 2012.
  • S. Kim, H.D. Kim, H. Kim, H.S. Ahn, H. Jo, J. Kim, and M.J. Kim, Effects of Nano-Fluid and Surfaces with Nano Structure on the Increase of CHF, Experimental Thermal and Fluid Science, Vol. 34, pp. 487–495, 2010.
  • R. Chen, M.-C. Lu, V. Srinivasan, Z. Wang, H. Cho, and A. Majumdar, Nanowires for Enhanced Boiling Heat Transfer, Nano Letters, Vol. 9, No. 2, pp. 548–553, 2009.
  • C. Li and G.P. Peterson, Parametric Study of Pool Boiling on Horizontal Highly Conductive Microporous Coated Surfaces, Journal of Heat Transfer, Vol. 129, pp. 1465–1475, 2007.
  • N.S. Dhillon, J. Buongiorno, and K.K. Varanasi, Critical Heat Flux Maxima during Boiling Crisis on Textured Surfaces, Nature Communications, Vol. 6, pp. 8247, 2015.
  • B.T. Ng., Y.M. Hung, and M.K. Tan, Acoustically-Controlled Leidenfrost Droplet, Journal of Colloid and Interface Science, Vol. 465, pp. 26–32, 2015.
  • P. Naphon, Effect of Magnetic Fields on the Boiling Heat Transfer Characteristics of Nanofluids, International Journal of Thermophysics, Vol. 36, pp. 2810–2819, 2015.
  • M.R. Pearson and J. Seyed-Yagoobi, EHD Conduction-Driven Enhancement of Critical Heat Flux in Pool Boiling, Journal of Electrostatics, Vol. 69, pp. 479–485, 2011.
  • H.A. Pohl, Dielectrophoresis, Cambridge University Press, Cambridge, UK, 1978.
  • T.B. Jones, Liquid Dielectrophoresis on the Microscale, Journal of Electrostatics, Vol. 51, pp. 290–299, 2001.
  • S. Siedel, S. Cioulachtjian, A.J. Robinson, and J. Bonjour, Electric Field Effects during Nucleate Boiling from an Artificial Nucleation Site, Experimental Thermal and Fluid Science, Vol. 35, pp. 762–771, 2011.
  • F. Chen, D. Liu, and Y. Song, Visualization of a Single Boiling Bubble in a DC Electric Field, Proceedings of the ASME 2012 Fluids Engineering Summer Meeting FEDSM2012, July 8–12, Rio Grande, Puerto Rico, 2012.
  • Z. Liu, C. Herman, and D. Mewes, Visualization of Bubble Detachment and Coalescence under the Influence of a Nonuniform Electric Field, Experimental Thermal and Fluid Science, Vol. 31, pp. 151–163, 2006.
  • H.B. Zhang, Y.Y. Yan, and Y.Q. Zu, Numerical Modelling of EHD Effects on Heat Transfer and Bubble Shapes of Nucleate Boiling, Applied Mathematical Modelling, Vol. 34, 626–638, 2010.
  • Y. Takata, H. Shirakawa, K. Tanaka, and T. Ito, Numerical Study on Motion of a Single Bubble Exerted by Non-Uniform Electric Field, International Journal of Transport Phenomena, Vol. 5, pp. 247–258, 2003.
  • N. Schweizer, P. Di Marco, and P. Stephan, Investigation of Wall Temperature and Heat Flux Distribution during Nucleate Boiling in the Presence of an Electric Field and in Variable Gravity, Experimental Thermal and Fluid Science, Vol. 44, pp. 419–430, 2013.
  • P. Di Marco, W. Grassi, G. Memoli, T. Takamasa, A. Tomiyama, and S. Hosokawa, Influence of Electric Field on Single Gas-Bubble Growth and Detachment in Microgravity, International Journal of Multiphase Flow, Vol. 29, pp. 559–578, 2003.
  • X. Quan, M. Gao, P. Cheng, and J. Li, An Experimental Investigation of Pool Boiling Heat Transfer on Smooth/Rib Surfaces under an Electric Field, International Journal of Heat and Mass Transfer, Vol. 85, pp. 595–608, 2015.
  • M. Sheikhbahai, M. Nasr Esfahany, and N. Etesami, Experimental Investigation of Pool Boiling of Fe3O4/Ethylene Glycolewater Nanofluid in Electric Field, International Journal of Thermal Sciences, Vol. 62, pp. 149–153, 2012.
  • M.K. Bologa, I.V. Kozhevnikov, O.I. Mardarskii, and A.A. Polikarpov, Boiling Heat Transfer in the Field of Electric Forces,Surface Engineering and Applied Electrochemistry, Vol. 48, No. 4, pp. 329–331, 2012.
  • P. Wang, P.L. Lewin, D.J. Swaffield, and G. Chen, Electric Field Effects on Boiling Heat Transfer of Liquid Nitrogen, Cryogenics, Vol. 49, pp. 379–389, 2009.
  • M.C. Zaghdoudi and M. Lallemand, Pool Boiling Heat Transfer Enhancement by Means of High Dc Electric Field, The Arabian Journal for Science and Engineering, Vol. 30, pp. 189–212, 2005.
  • P. Di Marco and W. Grassi, Effects of External Electric Field on Pool Boiling: Comparison of Terrestrial and Microgravity Data in the ARIEL Experiment, Experimental Thermal and Fluid Science, Vol. 35, pp. 780–787, 2011.
  • P. Di Marco, R. Raj, and J. Kim, Boiling in Variable Gravity under the Action of an Electric Field: Results of Parabolic Flight Experiments, Journal of Physics: Conference Series, Vol. 327, p. 012039, 2011.
  • Y.C. Kweon and M.H. Kim, Experimental Study on Nucleate Boiling Enhancement and Bubble Dynamic Behavior in Saturated Pool Boiling Using a Nonuniform DC Electric Field, International Journal of Multiphase Flow, Vol. 26, pp. 1351–1368, 2000.
  • M.C. Zaghdoudi and M. Lallemand, Analysis of the Polarity Influence on Nucleate Pool Boiling Under a DC Electric Field, Journal of Heat Transfer, Vol. 121, No. 4, pp. 856–864, 1999.
  • P. Carrica, P. Di Marco, and W. Grassi, Nucleate Pool Boiling in the Presence of an Electric Field: Effect of Subcooling and Heat-Up Rate, Experimental Thermal and Fluid Science, Vol. 15, pp. 213–220, 1997.
  • R. Mahmoudi, K. Adamiak, and G.S.P. Castle, Flattening of Boiling Curves at Post-CHF Regime in the Presence of Localized Electrostatic Fields, International Journal of Heat and Mass Transfer, Vol. 68, pp. 203–210, 2014.
  • C.P. Migliaccio and S. Garimella, Evaporative Heat Transfer from an Electrowetted Liquid Ribbon on a Heated Substrate, International Journal of Heat and Mass Transfer, Vol. 57, pp. 73–81, 2013.
  • K. Takano, I. Tanasawa, and S. Nishio, Enhancement of Evaporation of a Droplet Using EHD Effect, JSME International Journal. Series B, Fluids and Thermal Engineering, Vol. 37, No. 3, pp. 583–589, 1996.
  • G.J. McGranaghan and A.J. Robinson, The Mechanisms of Heat Transfer during Convective Boiling under the Influence of AC Electric Fields, International Journal of Heat and Mass Transfer, Vol. 73, pp. 376–388, 2014.
  • F.M. Verplaetsen and J.A. Berghmans, Film Boiling of an Electrically Insulating Fluid in the Presence of an Electric Field, Heat and Mass Transfer, Vol. 35, pp. 235–241, 1999.
  • V. Pandey, G. Biswas, and A. Dalal, Effect of Superheat and Electric Field on Saturated Film Boiling, Physics of Fluids, Vol. 28, p. 052102, 2016.
  • M. Cipriani, P. Di Marco, and W. Grassi, Effect of an Externally Applied Electric Field on Pool Film Boiling of FC-72, Heat Transfer Engineering, Vol. 25, No. 6, pp. 3–13, 2004.
  • W. Grassi and D. Testi, Heat Transfer Enhancement by Electric Fields in Several Heat Exchange Regimes, Annals of the New York Academy of Sciences, Vol. 1077, pp. 527–569, 2006.
  • H.J. Cho, J.P. Mizerak, and E.N. Wang, Turning Bubbles on and off during Boiling Using Charged Surfactants, Nature Communications, Vol. 6, pp. 8599, 2015.
  • F. Celestini and G. Kirstetter, Effect of an Electric Field on a Leidenfrost Droplet, Soft Matter, Vol. 8, pp. 5992, 2012.
  • A. Shahriari, J. Wurz, and V. Bahadur, Heat Transfer Enhancement Accompanying Leidenfrost State Suppression at Ultrahigh Temperatures, Langmuir, Vol. 30, pp. 12074–12081, 2014.
  • A. Shahriari, M. Hermes, and V. Bahadur, Electrical Control and Enhancement of Boiling Heat Transfer during Quenching, Applied Physics Letters, Vol. 108, p. 091607, 2016.
  • C.H. Panzarella, S.H. Davis, and S.G. Bankoff, Nonlinear Dynamics in Horizontal Film Boiling, Journal of Fluid Mechanics, Vol. 402, pp. 163–194, 2000.
  • B.J. Kim, J.H. Lee, and K.D. Kim, Rayleigh–Taylor Instability for Thin Viscous Gas Films: Application to Critical Heat Flux and Minimum Film Boiling, International Journal of Heat and Mass Transfer, Vol. 80, pp. 150–158, 2015.
  • B.J. Kim, J.H. Lee, and K.D. Kim, Improvements of Critical Heat Flux Models for Pool Boiling on Horizontal Surfaces Using Interfacial Instabilities of Viscous Potential Flows, International Journal of Heat and Mass Transfer, Vol. 93, pp. 200–206, 2016.
  • A. Shahriari, S. Das, R. Bonnecaze, and V. Bahadur, Analysis of the Instability Underlying Electrostatic Suppression of the Leidenfrost State, Physical Review Letters, 2016. (Under Review).
  • W.H. Thomason, D.J. Blumer, P. Singh, and D.P. Cope, Advanced Electrostatic Technologies for Dehydration of Heavy Oils, SPE International Thermal Operations and Heavy Oil Symposium, Calgary, November 1–3, Canada, 2005.
  • B.N. Popov and S.P. Kumaraguru, Cathodic Protection of Pipelines, in Myer, K., (Ed.), Handbook of Environmental Degradation of Materials, 2nd ed., Norwich, NY: William Andrew Publishing, 2005.
  • F. Mugele and J.-C. Baret, Electrowetting: From Basics to Applications, Journal of Physics: Condensed Matter, Vol. 17, pp. R705–R774, 2005.
  • G. Lippmann, Relations Between the Electrical and Capillary Phenomena, Annals of Chemistry and Physics, Vol. 5, pp. 494, 1875.
  • L. Chen and E. Bonaccurso, Electrowetting – From Statics to Dynamics, Advances in Colloid and Interface Science, Vol. 210, pp. 2–12, 2013.
  • V. Bahadur and S.V. Garimella, An Energy-Based Model for Electrowetting-Induced Droplet Motion, Journal of Micromechanics and Microengineering, Vol. 16, pp. 1494–1503, 2006.
  • N. Kumari, V. Bahadur, and S.V. Garimella, Electrical Actuation of Electrically Conducting and Insulating Droplets Using AC and DC Voltages, Journal of Micromechanics and Microengineering, Vol. 18, p. 105015, 2008.
  • V. Bahadur and S.V. Garimella, Energy Minimization–Based Analysis of Electrowetting for Microelectronics Cooling Applications, Microelectronics Journal, Vol. 39, pp. 957–965, 2008.
  • S.K. Cho, H. Moon, and C.-J. Kim, Creating, Transporting, Cutting, and Merging Liquid Droplets by Electrowetting-Based Actuation for Digital Microfluidic Circuits, Journal of Microelectromechanical Systems, Vol. 12, No. 1, pp. 70–80, 2003.
  • T. Krupenkin and J.A. Taylor, Reverse Electrowetting as a New Approach to High-Power Energy Harvesting, Nature Communications, Vol. 2, pp. 448, 2011.
  • D. Butrymowicz, M. Trela, and J. Karwacki, Enhancement of Condensation Heat Transfer by Means of Passive and Active Condensate Drainage Techniques, International Journal of Refrigeration-Revue Internationale du Froid, Vol. 26, No. 4, pp.473–484, 2003.
  • P.J. Marto, An Evaluation of Film Condensation on Horizontal Integral-Fin Tubes, Journal of Heat Transfer, Vol. 110, o. 4B, pp. 1287–1305, 1988.
  • I. Tanasawa, Recent Advances in Condensation Heat Transfer, in Heat Transfer 1994—Proceedings of the Tenth International Heat Transfer Conference, Vol. 1, pp. 297–312, Institution of Chemical Engineers and the Institution of Mechanical Engineers in conjunction with the UK Heat Transfer Society and the UK National Heat Transfer Committee, August 14-18, Brighton, UK, 1994.
  • T.M. Rudy and R.L. Webb, An Analytical Model to Predict Condensate Retention on Horizontal Integral-Fin Tubes, Journal of Heat Transfer, Vol. 107, No. 2, pp. 361–368, 1985.
  • D. Butrymowicz, M. Trela, and M.W. Collins, Enhancement of Condensation on a Horizontal Tube by Using a Solid Drainage Strip, Advances in Engineering Heat Transfer, pp. 205–214, 1995.
  • J.W. Rose, Dropwise Condensation Theory and Experiment: A Review, Proceedings of the Institution of Mechanical Engineers Part A-Journal of Power and Energy, Vol. 216, No. A2, pp. 115–128, 2002.
  • N. Miljkovic and E.N. Wang, Condensation Heat Transfer on Superhydrophobic Surfaces, MRS Bulletin, Vol. 38, No. 5, pp. 397–406, 2013.
  • R. Enright, N. Miljkovic, J.L. Alvarado, K.J. Kim, and J.W. Rose, Dropwise Condensation on Micro- and Nanostructured Surfaces, Nanoscale and Microscale Thermophysical Engineering, Vol. 8, No. 3, pp. 223–250, 2014.
  • N. Miljkovic, R. Enright, Y. Nam, K. Lopez, N. Dou, J. Sack, and E.N. Wang, Jumping-Droplet-Enhanced Condensation on Scalable Superhydrophobic Nanostructured Surfaces, Nano Letters, Vol. 13, No. 1, pp. 179–187, 2013.
  • R. Enright, N. Miljkovic, J. Sprittles, K. Nolan, R. Mitchell, and E.N. Wang, How Coalescing Droplets Jump, ACS Nano, Vol. 8, No. 10, pp. 10352–10362, 2014.
  • N. Miljkovic, D.J. Preston, and E.N. Wang, Recent Developments in Altered Wettability for Enhancing Condensation, in J.R. Thome and J. Kim, eds., Encyclopedia of Two-Phase Heat Transfer and Flow II, Singapore: World Scientific Publishing Co.,pp. 85–131, 2015.
  • A. Ghosh, S. Beaini, B.J. Zhang, R. Ganguly, and C.M. Megaridis, Enhancing Dropwise Condensation through Bioinspired Wettability Patterning, Langmuir, Vol. 30, No. 43, pp. 13103–13115, 2014.
  • S. Kumagai, S. Tanaka, H. Katsuda, and R. Shimada, On the Enhancement of Filmwise Condensation Heat Transfer by Means of the Coexistence with Dropwise Condensation Sections, Experimental Heat Transfer, Vol. 4, No. 1, pp. 71–82, 1991.
  • K.K. Varanasi, M. Hsu, N. Bhate, W.S. Yang, and T. Deng, Spatial Control in the Heterogeneous Nucleation of Water, Applied Physics Letters, Vol. 95, No. 9, p. 094101, 2009.
  • A. Lee, M.W. Moon, H. Lim, W.D. Kim, and H.Y. Kim, Water Harvest via Dewing, Langmuir, Vol. 28, No. 27, pp. 10183–10191, 2012.
  • D. Butrymowicz, M. Trela, and J. Karwacki, Enhancement of Condensation Heat Transfer by Means of EHD Condensate Drainage, International Journal of Thermal Sciences, Vol. 41, No. 7, pp. 646–657, 2002.
  • P.H.G. Allen and T.G. Karayiannis, Electrohydrodynamic Enhancement of Heat-Transfer and Fluid-Flow, Heat Recovery Systems & CHP, Vol. 15, No. 5, pp. 389–423, 1995.
  • S. Laohalertdecha, P. Naphon, and S. Wongwises, A Review of Electrohydrodynamic Enhancement of Heat Transfer, Renewable & Sustainable Energy Reviews, Vol. 11, No. 5, pp. 858–876, 2007.
  • H.R. Velkoff and J.H. Miller, Condensation of Vapor on a Vertical Plate with a Transverse Electrostatic Field, Journal of Heat Transfer, Vol. 87, No. 2, pp. 197, 1965.
  • H.Y. Choi, Electrohydrodynamic Condensation Heat TransferJournal of Heat Transfer, Vol. 90, No. 1, pp. 98, 1968.
  • R.E. Holmes and A.J. Chapman, Condensation of Freon-114 in Presence of a Strong Nonuniform, Alternating Electric Field, Journal of Heat Transfer, Vol. 92, No. 4, pp. 616, 1970.
  • A.K. Seth and L. Lee, The Effect of an Electric Field in the Presence of Noncondensable Gas on Film Condensation Heat Transfer, Journal of Heat Transfer, Vol. 96, No. 2, pp. 257–258, 1974.
  • A.B. Didkovsky and M.K. Bologa, Vapor Film Condensation Heat-Transfer and Hydrodynamics under the Influence of an Electric-Field, International Journal of Heat and Mass Transfer, Vol. 24, No. 5, pp. 811–819, 1981.
  • M.K. Bologa, V.P. Korovkin, and I.K. Savin, Mechanism of Condensation Heat-Transfer Enhancement in an Electric-Field and the Role of Capillary Processes, International Journal of Heat and Mass Transfer, Vol. 38, No. 1, pp. 175–182, 1995.
  • P. Cooper, Practical Design Aspects of EHD Heat-Transfer Enhancement in Evaporators, ASHRAE Transactions, Vol. 98, No. 98, pp. 445–454, 1992.
  • A. Yabe, Active Heat Transfer Enhancement by Applying Electric Fields, Proceedings of the ASME/JSME Thermal Engineering Summer Heat Transfer Conference, Vol. 3, pp. 61–67, 1991.
  • K. Yamashita, M. Kumagai, S. Sekita, A. Yabe, T. Taketani, and K. Kikushi, Heat Transfer Characteristics on an EHD Condenser, Proceedings of the ASME/JSME Thermal Engineering Summer Heat Transfer Conference, Vol. 3, pp. 61–67, 1991.
  • K. Sunada, A. Yabe, T. Taketani, and Y. Yoshizawa, Experimental Study of EHD Pseudo-Dropwise Condensation, Proceedings of the ASME/JSME Thermal Engineering Summer Heat Transfer Conference, Vol. 3, pp. 61–67, 1991.
  • M.K. Bologa, I.K. Savin, and A.B. Didkovsky, Electric-Field-Induced Enhancement of Vapor Condensation Heat-Transfer in the Presence of a Non-Condensable Gas, International Journal of Heat and Mass Transfer, Vol. 30, No. 8, pp. 1577–1585, 1987.
  • H. Omidvarborna, A. Mehrabani-Zeinabad, and M.N. Esfahany, Effect of Electrohydrodynamic (EHD) on Condensation of R-134a in Presence of Non-Condensable Gas, International Communications in Heat and Mass Transfer, Vol. 36, No. 3, pp. 286–291, 2009.
  • V.M. Budov, B.V. Kir’yanov, and I.A. Shemagin, Heat Transfer in the Laminar-Wave Section of Condensation of a Stationary Vapour, Journal of Engineering Physics, Vol. 52, No. 6, pp. 647–648, 1987.
  • N.I. Grigor’eva and V.E. Nakaoryakov, Exact Solution of Combined Heat and Mass Transfer during Film Adsorption, Journal of Engineering Physics, Vol. 33, No. 5, pp. 893–898, 1997.
  • V. Penev, S.B. Krylov, C.H. Boyadjiev, and V.P. Vorotilin, Wavy Flow of Thin Liquid Film, International Journal of Heat and Mass Transfer, Vol. 15, pp. 1389–1406, 1968.
  • J. Seyed-Yagoobi and J.E. Bryan, Enhancement of Heat Transfer and Mass Transport in Thermal Equipment with Electrohydrodynamics, Electrostatics, Vol. 163, pp. 127–130, 1999.
  • A.S. Dalkilic and S. Wongwises, Intensive Literature Review of Condensation inside Smooth and Enhanced Tubes, International Journal of Heat and Mass Transfer, Vol. 52, No. 15–16, pp. 3409–3426, 2009.
  • H.J. Butt, M.B. Untch, A. Golriz, S.A. Pihan, and R. Berger, Electric-Field-Induced Condensation: An Extension of the Kelvin Equation, Physical Review E, Vol. 83, No. 6, 2011.
  • S. Gomez-Monivas, J.J. Saenz, M. Calleja, and R. Garcia, Field-Induced Formation of Nanometer-Sized Water Bridges, Physical Review Letters, Vol. 91, No. 5, 2003.
  • D. Kaschiev, Nucleation: Basic Theory with Applications, Oxford, Butterworth Heinemann, 2000.
  • J.D. Engerer and T.S. Fisher, Flash Boiling from Carbon Foams for High-Heat-Flux Transient Cooling, Applied Physics Letters, Vol. 109, No. 2, pp. 024102, 2016.
  • M. Kollera and U. Grigull, The Bouncing off Phenomenon of Droplets with Condensation of Mercury, Heat and Mass Transfer, Vol. 2, No. 1, pp. 31–35, 1969.
  • J.B. Boreyko and C.H. Chen, Self-Propelled Dropwise Condensate on Superhydrophobic Surfaces, Physical Review Letters, Vol. 103, No. 18, 2009.
  • J.B. Boreyko and C.H. Chen, Self-Propelled Jumping Drops on Superhydrophobic Surfaces, Physics of Fluids, Vol. 22, No. 9, 2010.
  • F.J. Liu, G. Ghigliotti, J.J. Feng, and C.H. Chen, Numerical Simulations of Self-Propelled Jumping upon Drop Coalescence on Non-Wetting Surfaces, Journal of Fluid Mechanics, Vol. 752, pp. 39–65, 2014.
  • H. Cha, J.M. Chun, J. Sotelo, and N. Miljkovic, Focal Plane Shift Imaging for the Analysis of Dynamic Wetting Processes, ACS Nano, Vol. 10, No. 9, pp. 8223–8232, 2016.
  • J.B. Boreyko, Y.J. Zhao, and C.H. Chen, Planar Jumping-Drop Thermal Diodes, Applied Physics Letters, Vol. 99, No. 23, 2011.
  • J.B. Boreyko and P.C. Collier, Delayed Frost Growth on Jumping-Drop Superhydrophobic Surfaces, ACS Nano, Vol. 7, No. 2, pp. 1618–1627, 2013.
  • X.M. Chen, R.Y. Ma, H.B. Zhou, X.F. Zhou, L.F. Che, S.H. Yao, and Z.K. Wang, Activating the Microscale Edge Effect in a Hierarchical Surface for Frosting Suppression and Defrosting Promotion, Scientific Reports, Vol. 3, 2013.
  • Q.L. Zhang, M. He, J. Chen, J.J. Wang, Y.L. Song, and L. Jiang, Anti-Icing Surfaces Based on Enhanced Self-Propelled Jumping of Condensed Water Microdroplets, Chemical Communications, Vol. 49, No. 40, pp. 4516–4518, 2013.
  • J.Y. Lv, Y.L. Song, L. Jiang, and J.J. Wang, Bio-Inspired Strategies for Anti-Icing, ACS Nano, Vol. 8, No. 4, pp. 3152–3169, 2014.
  • G.S. Watson, L. Schwarzkopf, B.W. Cribb, S. Myhra, M. Gellender, and J.A. Watson, Removal Mechanisms of Dew via Self-Propulsion off the Gecko Skin, Journal of the Royal Society Interface, Vol. 12, No. 105, 2015.
  • K.M. Wisdom, J.A. Watson, X. Qua, F. Liua, G.S. Watson, and C.H. Chen, Self-Cleaning of Superhydrophobic Surfaces by Self-Propelled Jumping Condensate, Proceedings of the National Academy of Sciences of the United States of America, Vol. 110, No. 20, pp. 7992–7997, 2013.
  • G.S. Watson, M. Gellender, and J.A. Watson, Self-Propulsion of Dew Drops on Lotus Leaves: A Potential Mechanism for Self Cleaning, Biofouling, Vol. 30, No. 4, pp. 427–434, 2014.
  • Q.B. Wang, X. Yao, H. Liu, D. Quere, and L. Jiang, Self-Removal of Condensed Water on the Legs of Water Striders, Proceedings of the National Academy of Sciences of the United States of America, Vol. 112, No. 30, pp. 9247–9252, 2015.
  • R.L. Chavez, F.J. Liu, J.J. Feng, and C.H. Chen, Capillary-Inertial Colloidal Catapults upon Drop Coalescence, Applied Physics Letters, Vol. 109, No. 1, 2016.
  • J.B. Boreyko and C.H. Chen, Vapor Chambers with Jumping-Drop Liquid Return from Superhydrophobic Condensers, International Journal of Heat and Mass Transfer, Vol. 61, pp. 409–418, 2013.
  • K.G. Zhang, F.J. Liu, A.J. Williams, X.P. Qu, J.J. Feng, and C.H. Chen, Self-Propelled Droplet Removal from Hydrophobic Fiber-Based Coalescers, Physical Review Letters, Vol. 115, No. 7, 2015.
  • D.J. Preston, N. Miljkovic, R. Enright, and E.N. Wang, Jumping Droplet Electrostatic Charging and Effect on Vapor Drag, Journal of Heat Transfer, Vol. 136, No. 8, 2014.
  • N. Miljkovic, D.J. Preston, R. Enright, and E.N. Wang, Jumping-Droplet Electrostatic Energy Harvesting, Applied Physics Letters, Vol. 105, No. 1, 2014.
  • N. Miljkovic, D.J. Preston, R. Enright, and E.N. Wang, Electrostatic Charging of Jumping Droplets, Nature Communications, Vol. 4, 2013.
  • N. Miljkovic, R. Xiao, D.J. Preston, R. Enright, I. McKay, and E.N. Wang, Condensation on Hydrophilic, Hydrophobic, Nanostructured Superhydrophobic and Oil-Infused Surfaces, Journal of Heat Transfer, Vol. 135, No. 8, 2013.
  • N. Miljkovic, D.J. Preston, R. Enright, S. Adera, Y. Nam, and E.N. Wang, Jumping Droplet Dynamics on Scalable Nanostructured Superhydrophobic Surfaces, Journal of Heat Transfer, Vol. 135, No. 8, 2013.
  • N. Miljkovic, R. Enright, and E.N. Wang, Modeling and Optimization of Superhydrophobic Condensation, Journal of Heat Transfer, Vol. 135, No. 11, 2013.
  • N. Miljkovic, R. Enright, and E.N. Wang, Effect of Droplet Morphology on Growth Dynamics and Heat Transfer during Condensation on Superhydrophobic Nanostructured Surfaces, ACS Nano, Vol. 6, No. 2, pp.1776–1785 2012.
  • M.-K. Kim, H. Cha, P. Birbarah, S. Chavan, C. Zhong, Y. Xu, and N. Miljkovic, Enhanced Jumping-Droplet Departure, Langmuir, Vol. 31, No. 49, pp. 13452−13466, 2015.
  • R. Enright, N. Miljkovic, N. Dou, Y. Nam, and E.N. Wang, Condensation on Superhydrophobic Copper Oxide Nanostructures, Journal of Heat Transfer, Vol. 135, No. 9, 2013.
  • R. Enright, N. Miljkovic, A. Al-Obeidi, C.V. Thompson, and E.N. Wang, Condensation on Superhydrophobic Surfaces: The Role of Local Energy Barriers and Structure Length Scale, Langmuir, Vol. 28, No. 40, pp.14424–14432, 2012.
  • R. Enright, N. Dou, N. Miljkovic, Y. Nam, and E.N. Wang, Condensation on Superhydrophobic Copper Oxide Nanostructures, Proceedings of the ASME Micro/Nanoscale Heat and Mass Transfer International Conference, Vol. 2012, pp. 419–425, 2012.
  • J.T. Cheng, A. Vandadi, and C.L. Chen, Condensation Heat Transfer on Two-Tier Superhydrophobic Surfaces, Applied Physics Letters, Vol. 101, No. 13, 2012.
  • E. Olceroglu, S.M. King, M.M. Rahman, and M. McCarthy, Biotemplated Superhydrophobic Surfaces for Enhanced Dropwise Condensation, in ASME (Eds.), Proceedings of the ASME International Mechanical Engineering Congress and Exposition—2012, Vol. 7, pp. 2809–2815, November 9–15, Houston, TX, 2012.
  • E. Olceroglu, C.Y. Hsieh, M.M. Rahman, K.K.S. Lau, and M. McCarthy, Full-Field Dynamic Characterization of Superhydrophobic Condensation on Biotemplated Nanostructured Surfaces, Langmuir, Vol. 30, No. 25, pp. 7556–7566, 2014.
  • D. Attinger, C. Frankiewicz, A.R. Betz, T.M. Schutzius, R. Ganguly, A. Das, C.-J. Kim, and C.M. Megaridis, Surface Engineering for Phase Change Heat Transfer: A Review, MRS Energy & Sustainability, Vol. 1, 2014.
  • X.M. Chen, J.A. Weibel, and S.V. Garimella, Exploiting Microscale Roughness on Hierarchical Superhydrophobic Copper Surfaces for Enhanced Dropwise Condensation, Advanced Materials Interfaces, Vol. 2, No. 3, 2015.
  • Y.M. Hou, M. Yu, X.M. Chen, Z.K. Wang, and S.H. Yao, Recurrent Filmwise and Dropwise Condensation on a Beetle Mimetic Surface, ACS Nano, Vol. 9, No. 1, pp. 71–81, 2015.
  • C.-W. Lo, C.-C. Wang, and M.-C. Lu, Spatial Control of Heterogeneous Nucleation on the Superhydrophobic Nanowire Array, Advanced Functional Materials, 2014, 24, pp. 1211–1217.
  • K. Rykaczewski, J.H.J. Scott, S. Rajauria, J. Chinn, A.M. Chinn, and W. Jones, Three Dimensional Aspects of Droplet Coalescence during Dropwise Condensation on Superhydrophobic Surfaces, Soft Matter, Vol. 7, No. 19, pp. 8749–8752, 2011.
  • K. Rykaczewski, J.H.J. Scott, and A.G. Fedorov, Electron Beam Heating Effects during Environmental Scanning Electron Microscopy Imaging of Water Condensation on Superhydrophobic Surfaces, Applied Physics Letters, Vol. 98, No. 9, 2011.
  • K. Rykaczewski and J.H.J. Scott, Methodology for Imaging Nano-to-Microscale Water Condensation Dynamics on Complex Nanostructures, ACS Nano, Vol. 5, No. 7, pp.5962–5968, 2011.
  • K. Rykaczewski, A.T. Paxson, S. Anand, X.M. Chen, Z.K. Wang, and K.K. Varanasit, Multimode Multidrop Serial Coalescence Effects during Condensation on Hierarchical Superhydrophobic Surfaces, Langmuir, Vol. 29, No. 3, pp. 881–891, 2013.
  • K. Rykaczewski, W.A. Osborn, J. Chinn, M.L. Walker, J.H.J. Scott, W. Jones, C.L. Hao, S.H. Yao, and Z.K. Wang, How Nanorough Is Rough Enough to Make a Surface Superhydrophobic during Water Condensation? Soft Matter, Vol. 8, No. 33, pp. 8786–8794, 2012.
  • K. Rykaczewski, Microdroplet Growth Mechanism during Water Condensation on Superhydrophobic Surfaces, Langmuir, Vol. 28, No. 20, pp.7720–7729, 2012.
  • C. Dietz, K. Rykaczewski, A.G. Fedorov, and Y. Joshi, Visualization of Droplet Departure on a Superhydrophobic Surface and Implications to Heat Transfer Enhancement during Dropwise Condensation, Applied Physics Letters, Vol. 97, No. 3, 2010.
  • C. Dietz, K. Rykaczewski, A. Fedorov, and Y. Joshi, ESEM Imaging of Condensation on a Nanostructured Superhydrophobic Surface, Journal of Heat Transfer, Vol. 132, No. 8, 2010.
  • N. Miljkovic, D.J. Preston, R. Enright, and E.N. Wang, Electric-Field-Enhanced Condensation on Superhydrophobic Nanostructured Surfaces, ACS Nano, Vol. 7, No. 12, pp. 11043–11054. 2013.
  • B. Bhatia, D.J. Preston, D.M. Bierman, N. Miljkovic, A. Lenert, R. Enright, Y. Nam, K. Lopez, N. Dou, J. Sack, W.R. Chan, I. Celanovic, M. Soljacic, and E.N. Wang, Nanoengineered Surfaces for Thermal Energy Conversion, 15th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (Powermems 2015), December 1–4, Boston, MA, 2015.
  • D. Quere, Wetting and Roughness, Annual Review of Materials Research, 38, pp. 71–99, 2008.
  • A. Lafuma and D. Quere, Superhydrophobic States, Nature Materials, Vol. 2, No. 7, pp. 457–460, 2003.
  • P.-G.d. Gennes, F. Brochard-Wyart, and D. Quéré, Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves, Springer, New York, 2004.
  • P. Birbarah, Z.E. Li, A. Pauls, and N. Miljkovic, A Comprehensive Model of Electric-Field-Enhanced Jumping-Droplet Condensation on Superhydrophobic Surfaces, Langmuir, Vol. 31, No. 28, pp. 7885–7896, 2015.
  • M. Salazar, K. Minakata, and M. Reznikov, Electrostatic Enforcement of Steam Power Plant, 2013 IEEE Industry Applications Society Annual Meeting, October 6–11, Orlando, FL, 2013.
  • M. Reznikov and P. Williams, Corona Discharge in the Steam for Electrostatically Enforced Condensation, 2012 Electrostatics Joint Conference (ESA, IEJ, IEEE-IAS, SFE), June 12–14, Cambridge, Ontario, Canada, 2012.
  • T. Foulkes, J. Oh, P. Birbarah, J. Neely, N. Miljkovic, and R.C.N. Pilawa-Podgurski, Active Hot Spot Cooling of GaN Transistors with Electric Field Enhanced Jumping Droplet Condensation, IEEE Applied Power Electronics Conference, APEC2017, March 26–30, Tampa, FL, 2017.
  • J. Oh, T. Foulkes, P. Birbarah, J. Neely, R.C.N. Pilawa-Podgurski, and N. Miljkovic, Active Hot Spot Cooling with Electric-Field-Enhanced Jumping Droplet Condensation, Applied Physics Letters, (Under Review).
  • N.B. Aetukuri, A.X. Gray, M. Drouard, M. Cossale, L. Gao, A.H. Reid, R. Kukreja, H. Ohldag, C.A. Jenkins, E. Arenholz, K.P. Roche, H.A. Durr, M.G. Samant, and S.S.P. Parkin, Control of the Metal-Insulator Transition in Vanadium Dioxide by Modifying Orbital Occupancy, Nature Physics, Vol. 9, No. 10, pp. 661–666, 2013.
  • J. Wen, Z.Q. Tian, and J. Ma, Light- and Electric-Field-Induced Switching of Thiolated Azobenzene Self-Assembled Monolayer, Journal of Physical Chemistry C, Vol. 117, No. 39, pp.19934–19944, 2013.
  • E. Cantini, X.Y. Wang, P. Koelsch, J.A. Preece, J. Ma, and P.M. Mendes, Electrically Responsive Surfaces: Experimental and Theoretical Investigations, Accounts of Chemical Research, Vol. 49, No. 6, pp.1223–1231, 2016.
  • M.A.C. Stuart, W.T.S. Huck, J. Genzer, M. Muller, C. Ober, M. Stamm, G.B. Sukhorukov, I. Szleifer, V.V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, and S. Minko, Emerging Applications of Stimuli-Responsive Polymer Materials, Nature Materials, Vol. 9, No. 2, pp. 101–113, 2010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.