689
Views
3
CrossRef citations to date
0
Altmetric
Articles

Effects of Surface Wettability on Rapid Boiling and Bubble Nucleation: A Molecular Dynamics Study

, , , &
Pages 198-212 | Received 03 Apr 2018, Accepted 05 May 2018, Published online: 21 Aug 2018

References

  • P. V. Carey, “Thermodynamic Analysis of the Intrinsic Stability of Superheated Liquid in a Micromechanical Actuator with Elastic Walls,” Nanoscale Microscale Thermophys., vol. 4, no. 2, pp.109–123, 2000. DOI: 10.1080/108939500404025.
  • A. R. Betz et al., “Attinger. Boiling Heat Transfer on Superhydrophilic, Superhydrophobic, and Superbiphilic Surfaces,” Int. J. Heat Mass Transfer, vol. 57, no. 2, pp. 733–741, 2013. DOI: 10.1016/j.ijheatmasstransfer.2012.10.080.
  • B. Bourdon et al., “Wettability Influence on the Onset Temperature of Pool Boiling: Experimental Evidence onto Ultra-Smooth Surfaces,” Adv. Colloid Interface Sci., vol. 221, pp. 34, 2015. DOI: 10.1016/j.cis.2015.04.004.
  • B. Bourdon et al., “Enhancing the Onset of Pool Boiling by Wettability Modification on Nanometrically Smooth Surfaces,” Int. Commun. Heat Mass Transfer, vol. 45, no. 7, pp. 11–15, 2013. DOI: 10.1016/j.icheatmasstransfer.2013.04.009.
  • B. Bourdon et al., “Influence of the Wettability on the Boiling Onset,” Langmuir, vol. 28, no. 2, pp. 1618–1624, 2012. DOI: 10.1021/la203636a.
  • S. Das, B. Saha, and S. Bhaumik, “Experimental Study of Nucleate Pool Boiling Heat Transfer of Water by Surface Functionalization with SiO2 Nanostructure,” Exp. Thermal Fluid Sci., vol. 81, pp. 454–465, 2017. DOI: 10.1016/j.expthermflusci.2016.09.009.
  • H. Jo, H. S. Ahn, S. Kang, and M. H. Kim, “A Study of Nucleate Boiling Heat Transfer on Hydrophilic, Hydrophobic and Heterogeneous Wetting Surfaces,” Int. J. Heat Mass Transfer, vol. 54, no. 25–26, pp.5643–5652, 2011. DOI: 10.1016/j.ijheatmasstransfer.2011.06.001.
  • L. W. Lin, “Microscale Thermal Bubble Formation: Thermophysical Phenomena and Applications,” Nanoscale Microscale Thermophys., vol. 2, no. 2, pp.71–85, 1998. DOI: 10.1080/108939598199991.
  • J. G. Weng, S. Park, and C. L. Tien, “Interfacial Ambiguities in Microdroplets and Microbubbles,” Nanoscale Microscale Thermophys. Eng., vol. 4, no. 2, pp.83–87, 2000. DOI: 10.1080/108939500403990.
  • J. P. Hirth, G. M. Pound, and G. R. S. Pierre, “Bubble Nucleation,” Metallurgical Mater. Trans. B, vol. 1, pp. 939–945, 1970.
  • M. Blander and J. L. Katz, “Bubble Nucleation in Liquids,” AIChE J., vol. 21, no. 5, pp.833–848, 1979. DOI: 10.1002/aic.690210502.
  • S. Maruyama, “Molecular Dynamics Methods in Microscale Heat Transfer,” Adv. Numer. Heat Transfer, vol. 47, pp. 189–226, 2002.
  • Wu, “A Molecular Dynamics Simulation of Bubble Nucleation in Homogeneous Liquid under Heating with Constant Mean Negative Pressure,” Nanoscale Microscale Thermophys., vol. 7, no. 2, pp.137–151, 2003. DOI: 10.1080/10893950390203323.
  • P. Seungho and L. T. Chang, “Cavitation and Bubble Nucleation Using Molecular Dynamics Simulation,” Nanoscale Microscale Thermophys., vol. 4, no. 3, pp.161–175, 2000. DOI: 10.1080/10893950050148124.
  • Y. Zou, X. Huai, and L. Lin, “Molecular Dynamics Simulation for Homogeneous Nucleation of Water and Liquid Nitrogen in Explosive Boiling,” Appl. Thermal Eng., vol. 30, no. 8–9, pp.859–863, 2009. DOI: 10.1016/j.applthermaleng.2009.12.017.
  • J. Z. Wang, M. Chen, and Z. Y. Guo, “A Two-Dimensional Molecular Dynamics Simulation of Liquid–Vapor Nucleation,” Sci. Bull., vol. 48, pp. 623–626, 2003.
  • M. Chen et al., “Molecular Dynamics Studies of Homogeneous and Heterogeneous Thermal Bubble Nucleation,” Thermal Engineering Joint Conference, Honolulu, 13-17 March 2011, pp. 657–669, 2011.
  • S. Maruyama and T. Kimura, “A Molecular Dynamics Simulation of Bubble Nucleation on Solid Surface,” Nihon Kikai Gakkai Ronbunshu B Hen, vol. 65, pp. 3461–3467, 1999.
  • G. Nagayama, T. Tsuruta, and P. Cheng, “Molecular Dynamics Simulation on Bubble Formation in a Nanochannel,” Int. J. Heat . Transfer, vol. 49, pp. 4437–4443, 2006.
  • X. She et al., “Bubble Formation on Solid Surface with a Cavity Based on Molecular Dynamics Simulation,” Int. J. Heat . Transfer, vol. 95, pp. 278–287, 2016.
  • S. M. Shavik et al., “Molecular Dynamics Study of Effect of Different Wetting Conditions on Evaporation and Rapid Boiling of Ultra-Thin Argon Layer over Platinum Surface,” Procedia Eng., vol. 105, pp. 446–451, 2015.
  • T. Yamamoto and M. Matsumoto, “Initial Stage of Nucleate Boiling: Molecular Dynamics Investigation,” J. Thermal Sci. Technol., vol. 7, pp. 334–349, 2012.
  • A. Hens, R. Agarwal, and G. Biswas, “Nanoscale Study of Boiling and Evaporation in a Liquid Ar Film on a Pt Heater Using Molecular Dynamics Simulation,” Int. J. Heat . Transfer, vol. 71, pp. 303–312, 2014.
  • H. R. Seyf and Y. Zhang, “Effect of Nanotextured Array of Conical Features on Explosive Boiling over a Flat Substrate: A Nonequilibrium Molecular Dynamics Study,” Int. J. Heat . Transfer, vol. 66, pp. 613–624, 2013.
  • J. E. Lennard-Jones and A. F. Devonshire, “Critical Phenomena in Gases. I”, Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci., vol. 163, no. 912, pp. 53–70, 1937.
  • G. Nagayama et al., “On the Evaporation Rate of Ultra-Thin Liquid Film at the Nanostructured Surface: A Molecular Dynamics Study,” Int. J. Thermal Sci., vol. 49, no. 1, pp. 59–66, 2010.
  • G. Nagayama and P. Cheng, “Effects of Interface Wettability on Microscale Flow by Molecular Dynamics Simulation,” Int. J. Heat . Transfer, vol. 47, pp. 501–513, 2004.
  • X. D. Din and E. E. Michaelides, “Kinetic Theory and Molecular Dynamics Simulations of Microscopic Flows,” Phys. Fluids, vol. 9, pp. 3915–3925, 1997.
  • J. L. Barrat and L. Bocquet, “Large Slip Effect at a Nonwetting Fluid-Solid Interface,” Phys. Rev. Lett, vol. 82, pp. 4671–4674, 1999.
  • J. Delhommelle and P. Millie, “Inadequacy of the Lorentz–Berthelot Combining Rules for Accurate Predictions of Equilibrium Properties by Molecular Simulation,” Mol. Phys., vol. 99, pp. 619–625, 2001.
  • M. Allen, D. Tildesley, and U. Press. Computer Simulation of Liquids. Oxford University, New York, 1989.
  • S. Plimpton, “Fast Parallel Algorithms for Short-Range Molecular Dynamics,” J. Comput. Phys., vol. 117, pp. 1–19, 1993.
  • A. Stukowski, “Visualization and Analysis of Atomistic Simulation Data with Ovito – The Open Visualization Tool,” Model. Simul. Mater. Sci. Eng., vol. 18, pp. 015012, 2010.
  • J. J. Nicolas et al., “Equation of State for the Lennard-Jones Fluid,” Mol. Phys., vol. 37, no. 5, pp. 1429–1454, 1979.
  • T. Kinjo and M. Matsumoto, “Cavitation Processes and Negative Pressure,” Fluid Phase Equilib., vol. 144, pp. 343–350, 1998.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.