291
Views
0
CrossRef citations to date
0
Altmetric
Articles

Analysis of in-plane thermal phonon transport in III–V compound semiconductor superlattices

&
Pages 239-253 | Received 26 Mar 2018, Accepted 03 Jun 2018, Published online: 09 Jul 2018

References

  • A. Rogalski, “Infrared detectors: status and trends,” Prog. Quantum Electron., vol. 27, no. 2, pp.59–210, 2003. DOI: 10.1016/S0079-6727(02)00024-1.
  • G. Claire, C. Federico, L. S. Deborah, and Y. C. Alfred, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys., vol. 64, no. 11, pp.1533, 2001. DOI: 10.1088/0034-4885/64/11/204.
  • J. Faist, et al. “Quantum cascade laser,” Science, vol. 264, pp. 553+, 1994. DOI: 10.1126/science.264.5158.553.
  • C. Sirtori, et al. “GaAs/AlxGa1−xAs quantum cascade lasers,” Appl Phys Lett, vol. 73, no. 24, pp. 3486–3488, 1998. DOI: 10.1063/1.122812.
  • Y.-H. Kuo, et al. “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature, vol. 437, pp. 1334, 2005. DOI: 10.1038/nature04204.
  • T. H. Wood, et al. “High‐speed optical modulation with GaAs/GaAlAs quantum wells in a p‐i‐n diode structure,” Appl Phys Lett, vol. 44, no. 1, pp. 16–18, 1984. DOI: 10.1063/1.94586.
  • T. H. Wood, “Multiple quantum well (MQW) waveguide modulators,” J. Lightwave Technol., vol. 6, no. 6, pp.743–757, 1988. DOI: 10.1109/50.4063.
  • H. C. Liu, et al. “GaAs/AlGaAs quantum-well photodetector for visible and middle infrared dual-band detection,” Appl Phys Lett, vol. 77, no. 16, pp. 2437–2439, 2000. DOI: 10.1063/1.1318232.
  • S. D. Gunapala, et al. “9-um cutoff 256 × 256 GaAs/AlxGa1-xAs quantum well infrared photodetector hand-held camera,” IEEE Trans. Electron. Devices, vol. 44, no. 1, pp. 51–57, 1997. DOI: 10.1109/16.554791.
  • J.-Y. Clames, S.-Y. Lin, J.-Y. Chi, S.-T. Chou, and M.-C. Wu, “Device simulation for GaAs∕AlGaAs superlattice infrared photodetector with a single current blocking layer,” J. Appl. Phys., vol. 97, no. 6, pp.064910, 2005. DOI: 10.1063/1.1865312.
  • P. B. S. Goswami and J. Singh, “Wavelength selective detection using excitonic resonances in multiquantum-well structures,” IEEE J. Quantum. Electron., vol. 27, no. 4, pp.875–877, 1991. DOI: 10.1109/3.83317.
  • T. Kagawa, Y. Kawamura, H. Asai, and M. Naganuma, “InGaAs/InAlAs superlattice avalanche photodiode with a separated photoabsorption layer,” Appl Phys Lett, vol. 57, no. 18, pp.1895–1897, 1990. DOI: 10.1063/1.104004.
  • H. Page, et al. “300 K operation of a GaAs-based quantum-cascade laser at λ≈9 μm,” Appl Phys Lett, vol. 78, no. 22, pp. 3529–3531, 2001. DOI: 10.1063/1.1374520.
  • A. J. Kemp, et al. “Thermal management in vertical-external-cavity surface-emitting lasers: finite-element analysis of a heatspreader approach,” IEEE J. Quantum. Electron., vol. 41, no. 2, pp. 148–155, 2005. DOI: 10.1109/JQE.2004.839706.
  • H. Lindberg, M. Strassner, E. Gerster, J. Bengtsson, and A. Larsson, “Thermal management of optically pumped long-wavelength InP-based semiconductor disk lasers,” IEEE J. Selected Topics Quantum Electron., vol. 11, no. 5, pp.1126–1134, 2005. DOI: 10.1109/JSTQE.2005.853730.
  • M. Arik, J. Petroski, and S. Weaver, “Thermal challenges in the future generation solid state lighting applications: light emitting diodes,” in ITherm 2002. Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.02CH37258), 2002, pp. 113–120. DOI:10.1007/s10143-002-0243-8
  • L. Xiaowei, et al. “High-saturation-current InP-InGaAs photodiode with partially depleted absorber,” IEEE Photonics Technol. Lett., vol. 15, no. 9, pp. 1276–1278, 2003. DOI: 10.1109/LPT.2003.816118.
  • J. S. Paslaski, P. C. Chen, J.-S. Chen, C. M. Gee, and N. Bar-Chaim, “High-power microwave photodiode for improving performance of rf fiber optic links,” in SPIE’s 1996 International Symposium on Optical Science, Engineering, and Instrumentation, 1996, p. 10.
  • K. J. Williams and R. D. Esman, “Design considerations for high-current photodetectors,” J. Lightwave Technol., vol. 17, no. 8, pp.1443–1454, 1999. DOI: 10.1109/50.779167.
  • J. Ravichandran, et al. “Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices,” Nat. Mater, vol. 13, no. 2, pp. 168–172, 2014. DOI: 10.1038/nmat3826.
  • M. N. Luckyanova, et al. “Coherent phonon heat conduction in superlattices,” Science, vol. 338, no. 6109, pp. 936–939, 2012. DOI: 10.1126/science.1225549.
  • T. Puurtinen and I. Maasilta, “Low-temperature coherent thermal conduction in thin phononic crystal membranes,” Crystals, vol. 6, no. 6, pp.72, 2016. DOI: 10.3390/cryst6060072.
  • G. Chen, “Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices,” Phys. Rev. B, vol. 57, no. 23, pp.14958–14973, 1998. DOI: 10.1103/PhysRevB.57.14958.
  • E. S. Landry and A. J. H. McGaughey, “Effect of interfacial species mixing on phonon transport in semiconductor superlattices,” Phys. Rev. B, vol. 79, no. 7, pp.075316, 2009. DOI: 10.1103/PhysRevB.79.075316.
  • J. Garg, N. Bonini, B. Kozinsky, and N. Marzari, “Role of disorder and anharmonicity in the thermal conductivity of silicon-germanium alloys: A first-principles study,” Phys. Rev. Lett., vol. 106, no. 4, pp.045901, 2011. DOI: 10.1103/PhysRevLett.106.045901.
  • J. Garg and G. Chen, “Minimum thermal conductivity in superlattices: A first-principles formalism,” Phys. Rev. B, vol. 87, no. 14, pp.140302, 2013. DOI: 10.1103/PhysRevB.87.140302.
  • P. Chen, et al. “Role of surface-segregation-driven intermixing on the thermal transport through planar Si/Ge superlattices,” Phys. Rev. Lett., vol. 111, no. 11, pp. 115901, 2013. DOI: 10.1103/PhysRevLett.111.052301.
  • B. C. Daly, H. J. Maris, K. Imamura, and S. Tamura, “Molecular dynamics calculation of the thermal conductivity of superlattices,” Phys. Rev. B, vol. 66, no. 2, pp.024301, 2002. DOI: 10.1103/PhysRevB.66.024301.
  • W. S. Capinski and H. J. Maris, “Thermal conductivity of GaAs/AlAs superlattices,” Phys. B Condensed Matter., vol. 219, pp. 699–701, 1996. DOI: 10.1016/0921-4526(95)00858-6.
  • T. Konstantinos, C. Patrice, D. Jean-Yves, and S. Abdelhak, “Thermal conductivity of GaAs/AlAs superlattices and the puzzle of interfaces,” J. Phys. Condensed Matt., vol. 22, pp. 475001, 2010.
  • B. Latour, S. Volz, and Y. Chalopin, “Microscopic description of thermal-phonon coherence: from coherent transport to diffuse interface scattering in superlattices,” Phys. Rev. B, vol. 90, no. 1, pp.014307, 2014. DOI: 10.1103/PhysRevB.90.014307.
  • Z. Tian, K. Esfarjani, and G. Chen, “Green’s function studies of phonon transport across Si/Ge superlattices,” Phys. Rev. B, vol. 89, no. 23, pp.235307, 2014. DOI: 10.1103/PhysRevB.89.235307.
  • C.-K. Liu, et al. “Thermal conductivity of Si/SiGe superlattice films,” J. Appl. Phys., vol. 104, no. 11, pp. 114301, 2008. DOI: 10.1063/1.3032602.
  • G. Chen and M. Neagu, “Thermal conductivity and heat transfer in superlattices,” Appl Phys Lett, vol. 71, no. 19, pp.2761–2763, 1997. DOI: 10.1063/1.120126.
  • G. Chen, “Size and interface effects on thermal conductivity of superlattices and periodic thin-film structures,” J. Heat Transfer, vol. 119, no. 2, pp.220–229, 1997. DOI: 10.1115/1.2824212.
  • S. Mei and I. Knezevic, “Thermal conductivity of III-V semiconductor superlattices,” J. Appl. Phys., vol. 118, no. 17, pp.175101, 2015. DOI: 10.1063/1.4935142.
  • Z. Aksamija and I. Knezevic, “Thermal conductivity of Si1-xGex/Si1-yGey superlattices: Competition between interfacial and internal scattering,” Phys. Rev. B, vol. 88, no. 15, pp.155318, 2013. DOI: 10.1103/PhysRevB.88.155318.
  • B. Yang and G. Chen, “Partially coherent phonon heat conduction in superlattices,” Phys. Rev. B, vol. 67, no. 19, pp.195311, 2003. DOI: 10.1103/PhysRevB.67.195311.
  • J. Lim, K. Hippalgaonkar, S. C. Andrews, A. Majumdar, and P. Yang, “Quantifying surface roughness effects on phonon transport in silicon nanowires,” Nano Lett., vol. 12, no. 5, pp.2475–2482, 2012. DOI: 10.1021/nl3005868.
  • J. M. Ziman. Electrons and Phonons. Oxford University Press, Oxford, UK, 1960.
  • A. Spizzichino and P. Beckmann. The scattering of electromagnetic waves from rough surfaces, MacMillan, New York, 1963.
  • V. Bezák and J. Krempaský, “A phenomenological theory of the thermal conductivity of thin films,” Czechoslovak J. Phys. B, vol. 18, no. 10, pp.1264–1279, 1968. DOI: 10.1007/BF01690801.
  • K. Kothari and M. Maldovan, “Phonon surface scattering and thermal energy distribution in superlattices,” Sci. Rep., vol. 7, no. 1, pp.5625, 2017. DOI: 10.1038/s41598-017-05631-3.
  • D. Strauch and B. Dorner, “Phonon dispersion in GaAs,” J. Phys. Condensed Matt., vol. 2, pp. 1457, 1990.
  • L. Lindsay, D. A. Broido, and T. L. Reinecke, “Ab initio thermal transport in compound semiconductors,” Phys. Rev. B, vol. 87, no. 16, pp.165201, 2013. DOI: 10.1103/PhysRevB.87.165201.
  • C. A. Evans, et al. “Thermal modeling of terahertz quantum-cascade lasers: Comparison of optical waveguides,” IEEE J. Quantum. Electron., vol. 44, no. 7, pp. 680–685, 2008. DOI: 10.1109/JQE.2008.922327.
  • M. A. Afromowitz, “Thermal conductivity of Ga1−xAlxAs alloys,” J. Appl. Phys., vol. 44, no. 3, pp.1292–1294, 1973. DOI: 10.1063/1.1662342.
  • M. Maldovan, “Micro to nano scale thermal energy conduction in semiconductor thin films,” J. Appl. Phys., vol. 110, no. 3, pp.034308, 2011. DOI: 10.1063/1.3607295.
  • L. Tengfei, G. Jivtesh, S. Junichiro, E. Keivan, and C. Gang, “Gallium arsenide thermal conductivity and optical phonon relaxation times from first-principles calculations,” EPL (Europhysics Letters), vol. 101, no. 1, pp.16001, 2013. DOI: 10.1209/0295-5075/101/16001.
  • M. Maldovan, “Phonon wave interference and thermal bandgap materials,” Nat. Mater, vol. 14, no. 7, pp.667–674, 2015. DOI: 10.1038/nmat4308.
  • A. Balandin and K. L. Wang, “Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well,” Phys. Rev. B, vol. 58, no. 3, pp.1544–1549, 1998. DOI: 10.1103/PhysRevB.58.1544.
  • A. Malhotra and M. Maldovan, “Surface scattering controlled heat conduction in semiconductor thin films,” J. Appl. Phys., vol. 120, no. 20, pp.204305, 2016. DOI: 10.1063/1.4968542.
  • X. Y. Yu, G. Chen, A. Verma, and J. S. Smith, “Temperature dependence of thermophysical properties of GaAs/AlAs periodic structure,” Appl Phys Lett, vol. 67, no. 24, pp.3554–3556, 1995. DOI: 10.1063/1.114919.
  • W. R. Johnson, S. Gunapala, J. Mumolo, and D. Johnson. “LWIR QWIP focal plane array mounting with cryogenic optical system,” SPIE's Proceedings Vol. 6660, San Diego, CA, 2007.
  • S. Jorge, P. José Luis, and J. Juan, “Nanoscale effects on the thermal and mechanical properties of AlGaAs/GaAs quantum well laser diodes: influence on the catastrophic optical damage,” J. Phys. D Appl. Phys., vol. 50, no. 23, pp.235101, 2017. DOI: 10.1088/1361-6463/aa6fbd.
  • S. Adachi, “GaAs, AlAs, and AlxGa1−xAs: material parameters for use in research and device applications,” J. Appl. Phys., vol. 58, no. 3, pp.R1–R29, 1985. DOI: 10.1063/1.336070.
  • C. C. Barron, C. J. Mahon, B. J. Thibeault, and L. A. Coldren, “Design, fabrication and characterization of high-speed asymmetric Fabry-Perot modulators for optical interconnect applications,” Optical Quantum Electron, vol. 25, no. 12, pp.S885–S898, 1993. DOI: 10.1007/BF00430332.
  • S. Goswami, et al. “Low-power exciton-based heterojunction bipolar transistors for thresholding logic applications,” IEEE J. Quantum. Electron., vol. 27, no. 3, pp. 760–768, 1991. DOI: 10.1109/3.81386.
  • K. Esfarjani, G. Chen, and H. T. Stokes, “Heat transport in silicon from first-principles calculations,” Phys. Rev. B, vol. 84, no. 8, pp.085204, 2011. DOI: 10.1103/PhysRevB.84.085204.
  • M. Maldovan, “Narrow low-frequency spectrum and heat management by thermocrystals,” Phys. Rev. Lett., vol. 110, no. 2, pp.025902, 2013. DOI: 10.1103/PhysRevLett.110.025902.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.