533
Views
7
CrossRef citations to date
0
Altmetric
Original Article

Droplet Growth Dynamics during Atmospheric Condensation on Nanopillar Surfaces

, , &
Pages 270-295 | Received 15 Oct 2017, Accepted 20 Jun 2018, Published online: 31 Jul 2018

References

  • J. Rose, “Dropwise condensation theory and experiment: a review,” Proceedings Institution Mechanical Engineers, Part. A: Journal Power Energy, vol. 216, pp. 115–128, 2002.
  • D. Beysens and C. Knobler, “Growth of breath figures,” Phys. Rev. Lett., vol. 57, no. 12, pp.1433, 1986. DOI: 10.1103/PhysRevLett.57.1324.
  • A. Ashrafi and A. Moosavi, “Droplet condensation on chemically homogeneous and heterogeneous surfaces,” J. Appl. Phys., vol. 120, no. 12, pp.124901, 2016. DOI: 10.1063/1.4962645.
  • M. Mei, F. Hu, C. Han, and Y. Cheng, “Time-averaged droplet size distribution in steady-state dropwise condensation,” Int. J. Heat Mass Transf., vol. 88, pp. 338–345, 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.04.087.
  • E. Le Fevre, “A theory of heat transfer by dropwise condensation,” presented at the 3rd International Heat Transfer Conference, pp. 362–375, 1966.
  • M. Mei, B. Yu, M. Zou, and L. Luo, “A numerical study on growth mechanism of dropwise condensation,” Int. J. Heat Mass Transf., vol. 54, no. 9, pp.2004–2013, 2011. DOI: 10.1016/j.ijheatmasstransfer.2011.01.002.
  • R. Narhe and D. Beysens, “Water condensation on a super-hydrophobic spike surface,” EPL (Europhysics Letters), vol. 75, no. 1, pp.98, 2006. DOI: 10.1209/epl/i2006-10069-9.
  • B. S. Sikarwar, S. Khandekar, and K. Muralidhar, “Mathematical modelling of dropwise condensation on textured surfaces,” Sadhana, vol. 38, no. 6, pp.1135–1171, 2013. DOI: 10.1007/s12046-013-0190-9.
  • J. E. Castillo, J. A. Weibel, and S. V. Garimella, “The effect of relative humidity on dropwise condensation dynamics,” Int. J. Heat Mass Transf., vol. 80, pp. 759–766, 2015. DOI: 10.1016/j.ijheatmasstransfer.2014.09.080.
  • K. Yanagisawa, M. Sakai, T. Isobe, S. Matsushita, and A. Nakajima, “Investigation of droplet jumping on superhydrophobic coatings during dew condensation by the observation from two directions,” Appl. Surf. Sci., vol. 315, pp. 212–221, 2014. DOI: 10.1016/j.apsusc.2014.07.120.
  • N. Miljkovic, R. Enright, and E. N. Wang, “Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces,” ACS Nano, vol. 6, no. 2, pp.1776–1785, 2012. DOI: 10.1021/nn205052a.
  • N. Miljkovic and E. N. Wang, “Condensation heat transfer on superhydrophobic surfaces,” MRS Bulletin, vol. 38, no. 5, pp.397–406, 2013. DOI: 10.1557/mrs.2013.103.
  • R. Enright, N. Miljkovic, N. Dou, Y. Nam, and E. N. Wang, “Condensation on superhydrophobic copper oxide nanostructures,” J. Heat Transfer, vol. 135, no. 9, pp.091304, 2013. DOI: 10.1115/1.4024424.
  • X. H. Ma, T. Y. Song, Z. Lan, and T. Bai., “Transient characteristics of initial droplet size distribution and effect of pressure on evolution of transient condensation on low thermal conductivity surface,” Int. J. Thermal Sci., vol. 49, pp. 1517–1526, 2010. DOI: 10.1016/j.ijthermalsci.2010.05.011.
  • R. Wen, Z. Lan, B. Peng, W. Xu, and X. Ma, “Droplet dynamics and heat transfer for dropwise condensation at lower and ultra-lower pressure,” Appl. Thermal Eng., vol. 88, pp. 265–273, 2015. DOI: 10.1016/j.applthermaleng.2014.09.069.
  • R. Narhe and D. Beysens, “Growth dynamics of water drops on a square-pattern rough hydrophobic surface,” Langmuir, vol. 23, no. 12, pp.6486–6489, 2007. DOI: 10.1021/la062021y.
  • R. Leach, F. Stevens, S. Langford, and J. Dickinson, “Dropwise condensation: experiments and simulations of nucleation and growth of water drops in a cooling system,” Langmuir, vol. 22, no. 21, pp.8864–8872, 2006. DOI: 10.1021/la061901+.
  • X. Qu, et al., “Self-propelled sweeping removal of dropwise condensate,” Appl. Phys. Lett., vol. 106, no. 22, pp.221601, 2015. DOI: 10.1063/1.4921923.
  • S. Chavan, et al., “Heat transfer through a condensate droplet on hydrophobic and nanostructured superhydrophobic surfaces,” Langmuir, vol. 32, no. 31, pp.7774–7787, 2016. DOI: 10.1021/acs.langmuir.6b01903.
  • M. M. Farhangi, P. J. Graham, N. R. Choudhury, and A. Dolatabadi, “Induced detachment of coalescing droplets on superhydrophobic surfaces,” Langmuir, vol. 28, no. 2, pp.1290–1303, 2012. DOI: 10.1021/la203926q.
  • R. Enright, N. Miljkovic, A. A. Obeidi, C. V. Thompson, and E. N. Wang, “Condensation on superhydrophobic surfaces: the role of local energy barriers and structure length scale,” Langmuir, vol. 28, pp. 14424–14432, 2012. DOI: 10.1021/la302599n.
  • N. Miljkovic, R. Enright, and E. N. Wang, “Modeling and optimization of superhydrophobic condensation,” J. Heat Transfer, vol. 135, no. 11, pp.111004, 2013. DOI: 10.1115/1.4024597.
  • G. Li, et al., “Microscopic droplet formation and energy transport analysis of condensation on scalable superhydrophobic nanostructured copper oxide surfaces,” Langmuir, vol. 30, no. 48, pp.14498–14511, 2014. DOI: 10.1021/la503003r.
  • D. Torresin, M. K. Tiwari, D. Del Col, and D. Poulikakos, “Flow condensation on copper-based nanotextured superhydrophobic surfaces,” Langmuir, vol. 29, no. 2, pp.840–848, 2013. DOI: 10.1021/la304389s.
  • K. O. Zamuruyev, et al., “Continuous droplet removal upon dropwise condensation of humid air on a hydrophobic micropatterned surface,” Langmuir, vol. 30, no. 33, pp.10133–10142, 2014. DOI: 10.1021/la5004462.
  • S. Anand, A. T. Paxson, R. Dhiman, J. D. Smith, and K. K. Varanasi, “Enhanced condensation on lubricant-impregnated nanotextured surfaces,” ACS Nano, vol. 6, no. 11, pp.10122–10129, 2012. DOI: 10.1021/nn303867y.
  • K. Rykaczewski, et al., “Three dimensional aspects of droplet coalescence during dropwise condensation on superhydrophobic surfaces,” Soft Matter, vol. 7, no. 19, pp.8749–8752, 2011. DOI: 10.1039/c1sm06219k.
  • J. Blaschke, T. Lapp, B. Hof, and J. Vollmer, “Breath figures: nucleation, growth, coalescence, and the size distribution of droplets,” Phys. Rev. Lett., vol. 109, no. 6, pp.068701, 2012. DOI: 10.1103/PhysRevLett.109.068701.
  • D. Attinger, et al., “Surface engineering for phase change heat transfer,” A Review, MRS Energy & Sustainability-A Review Journal, vol. 1, E4, 2014 DOI:10.1557/mre.2014.9.
  • H. J. Cho, D. J. Preston, Y. Zhu, and E. N. Wang, “Nanoengineered materials for liquid–vapour phase-change heat transfer,” Nat. Rev. Mater., vol. 2, pp. 16092, 2016. DOI: 10.1038/natrevmats.2016.92.
  • D. J. Preston, D. L. Mafra, N. Miljkovic, J. Kong, and E. N. Wang, “Scalable graphene coatings for enhanced condensation heat transfer,” Nano Lett., vol. 15, no. 5, pp.2902–2909, 2015. DOI: 10.1021/nl504628s.
  • R. Wen, et al., “Wetting transition of condensed droplets on nanostructured superhydrophobic surfaces: coordination of surface properties and condensing conditions,” ACS Appl. Mater Interfaces, vol. 9, no. 15, pp.13770–13777, 2017. DOI: 10.1021/acsami.7b01812.
  • R. Wen, et al., “Hydrophobic copper nanowires for enhancing condensation heat transfer,” Nano Energy, vol. 33, pp. 177–183, 2017. DOI: 10.1016/j.nanoen.2017.01.018.
  • J. Huang, J. Zhang, and L. Wang, “Review of vapor condensation heat and mass transfer in the presence of non-condensable gas,” Appl. Therm. Eng., vol. 89, pp. 469–484, 2015. DOI: 10.1016/j.applthermaleng.2015.06.040.
  • Y. Zhao, et al., “Effects of millimetric geometric features on dropwise condensation under different vapor conditions,” Int. J. Heat Mass Transf., vol. 119, pp. 931–938, 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.11.139.
  • H. Cha, et al., “Nanoscale-agglomerate-mediated heterogeneous nucleation,” Nano Lett., vol. 17, no. 12, pp.7544–7551, 2017. DOI: 10.1021/acs.nanolett.7b03479.
  • J. B. Boreyko, et al., “Controlling condensation and frost growth with chemical micropatterns,” Sci. Rep., vol. 6, 2016. DOI: 10.1038/srep19131.
  • J. C. Hulteen and R. P. Van Duyne, “Nanosphere lithography: a materials general fabrication process for periodic particle array surfaces,” Journal Vacuum Science Technology A: Vacuum, Surfaces, Films, vol. 13, no. 3, pp.1553–1558, 1995. DOI: 10.1116/1.579726.
  • W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology, vol. 18, no. 48, pp.485302, 2007. DOI: 10.1088/0957-4484/18/49/495102.
  • C. Qu and E. C. Kinzel, “Polycrystalline metasurface perfect absorbers fabricated using microsphere photolithography,” Opt. Lett., vol. 41, pp. 3399–3402, 2016.
  • A. Bonakdar, et al., “Deep-UV microsphere projection lithography,” Opt. Lett., vol. 40, pp. 2537–2540, 2015.
  • O. Shavdina, et al., “Large area fabrication of periodic TiO2 nanopillars using microsphere photolithography on a photopatternable Sol–gel film,” Langmuir, vol. 31, no. 28, pp.7877–7884, 2015. DOI: 10.1021/acs.langmuir.5b01191.
  • H. Kim, et al., “Water harvesting from air with metal-organic frameworks powered by natural sunlight,” Science, vol. 356, no. 6336, pp.430–434, 2017. DOI: 10.1126/science.aam8743.
  • A. Kajale, R. Peters, and M. Winslett, “Evaluation of effectiveness of condensate recovery and its reuse as a make-up water requirement in chilled water plants at the University of Alabama at Birmingham, ESTIMATION AND FORECASTING OF AIR HANDLING CONDENSATE RECOVERY USING MULTIPLE REGRESSION ANALYSIS AND TIME-SERIES AUTOREGRESSIVE MODELS,” PhD thesis,1001, pp. 80, 2013.
  • S. Suzuki and K. Ueno, “Apparent contact angle calculated from a water repellent model with pinning effect,” Langmuir, vol. 33, pp. 138–143, 2016. DOI: 10.1021/acs.langmuir.6b03832.
  • A. Ghosh, S. Beaini, B. J. Zhang, R. Ganguly, and C. M. Megaridis, “Enhancing dropwise condensation through bioinspired wettability patterning,” Langmuir, vol. 30, no. 43, pp.13103–13115, 2014. DOI: 10.1021/la5028866.
  • A. Zdziennicka, K. Szymczyk, J. Krawczyk, and B. Jańczuk, “Some remarks on the solid surface tension determination from contact angle measurements,” Appl. Surf. Sci., vol. 405, pp. 88–101, 2017. DOI: 10.1016/j.apsusc.2017.01.068.
  • I. T. Pai, C. Leu, and M. H. Hon, “A hierarchical structure through imprinting of a polyimide precursor without residual layers,” J. Micromech. Microeng., vol. 18, no. 10, pp.105005, 2008. DOI: 10.1088/0960-1317/18/10/105005.
  • R. N. Wenzel, “Resistance of solid surfaces to wetting by water,” Ind. Eng. Chem., vol. 28, no. 8, pp.988–994, 1936. DOI: 10.1021/ie50320a024.
  • Q. Zeng and S. Xu, “Thermodynamics and characteristics of heterogeneous nucleation on fractal surfaces,” J. Phys. Chem. C, vol. 119, pp. 27426–27433, 2015. DOI: 10.1021/acs.jpcc.5b07709.
  • A. Aili, Q. Ge, and T. Zhang, “How nanostructures affect water droplet nucleation on superhydrophobic surfaces,” J. Heat Transfer, vol. 139, no. 11, pp.112401, 2017. DOI: 10.1115/1.4036763.
  • J. W. Harris and H. Stöcker, Handbook of Mathematics and Computational Science. New York, NY: Springer-verlag New York, Inc., 1998.
  • D. Seo, S. Oh, S. Shin, and Y. Nam, “Dynamic heat transfer analysis of condensed droplets growing and coalescing on water repellent surfaces,” Int. J. Heat Mass Transf., vol. 114, pp. 934–943, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.06.129.
  • H. Kim and Y. Nam, “Condensation behaviors and resulting heat transfer performance of nano-engineered copper surfaces,” Int. J. Heat Mass Transf., vol. 93, pp. 286–292, 2016. DOI: 10.1016/j.ijheatmasstransfer.2015.09.079.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.