676
Views
11
CrossRef citations to date
0
Altmetric
Original Article

Multiscale Investigation of Femtosecond Laser Pulses Processing Aluminum in Burst Mode

, ORCID Icon, , ORCID Icon &
Pages 324-347 | Received 05 May 2018, Accepted 28 Jun 2018, Published online: 20 Aug 2018

References

  • L. Jiang, A.-D. Wang, B. Li, T.-H. Cui, and Y.-F. Lu, “Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application,” Light Sci. Appl., vol. 7, pp. 17134, 2018. DOI: 10.1038/lsa.2017.134.
  • J. Huang, Y. Zhang, and J. K. Chen, “Ultrafast phase change during femtosecond laser interaction with gold films: effect of film thickness,” Numer. Heat Transf. Part A Appl., vol. 57, pp. 893–910, 2010. DOI: 10.1080/10407782.2010.489491.
  • X. Li, L. Jiang, and H.-L. Tsai, “Phase change mechanisms during femtosecond laser pulse train ablation of nickel thin films,” J. Appl. Phys., vol. 106, pp. 064906, 2009. DOI: 10.1063/1.3223331.
  • J. Huang, Y. Zhang, and J. K. Chen, “Ultrafast solid-liquid-vapor phase change in a thin gold film irradiated by multiple femtosecond laser pulses,” Int. J. Heat Mass Transf., vol. 52, pp. 3091–3100, 2009. DOI: 10.1016/j.ijheatmasstransfer.2009.02.009.
  • J. S. Hoppius, et al., “On femtosecond laser shock peening of stainless steel AISI 316,” Appl. Surf. Sci., vol. 435, pp. 1120–1124, 2018. DOI: 10.1016/j.apsusc.2017.11.145.
  • A. Kanitz, et al., “Impact of liquid environment on femtosecond laser ablation,” Appl. Phys. A Mater. Sci. Process, vol. 123, 674, 2017. DOI: 10.1007/s00339-017-1280-z.
  • Y. Liao, C. Ye, and G. J. Cheng, “[INVITED] A review: warm laser shock peening and related laser processing technique,” Opt. Laser Technol, vol. 78, pp. 15–24, 2016. DOI: 10.1016/j.optlastec.2015.09.014.
  • A. K. Gujba and M. Medraj, “Laser peening process and its impact on materials properties in comparison with shot peening and ultrasonic impact peening,” Materials, vol. 7, pp. 7925–7974, 2014. DOI: 10.3390/ma7127925.
  • C. Gaudiuso, et al., “Incubation during laser ablation with bursts of femtosecond pulses with picosecond delays,” Opt. Express, vol. 26, pp. 3801, 2018. DOI: 10.1364/OE.26.003801.
  • F. Di Niso, et al., “Role of heat accumulation on the incubation effect in multi-shot laser ablation of stainless steel at high repetition rates,” Opt. Express, vol. 22, pp. 12200, 2014. DOI: 10.1364/OE.22.012200.
  • A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum., vol. 71, pp. 1929, 2000. DOI: 10.1063/1.1150614.
  • L. Jiang and H. L. Tsai, “Modeling of ultrashort laser pulse-train processing of metal thin films,” Int. J. Heat Mass Transf., vol. 50, pp. 3461–3470, 2007. DOI: 10.1016/j.ijheatmasstransfer.2007.01.049.
  • M. E. Povarnitsyn, V. B. Fokin, P. R. Levashov, and T. E. Itina, “Molecular dynamics simulation of subpicosecond double-pulse laser ablation of metals,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 92, 2015. DOI: 10.1103/PhysRevB.92.174104.
  • P. Ji and Y. Zhang, “Melting and thermal ablation of a silver film induced by femtosecond laser heating: a multiscale modeling approach,” Appl. Phys. A., vol. 123, pp. 671, 2017. DOI: 10.1007/s00339-017-1269-7.
  • P. Ji and Y. Zhang, “Continuum-atomistic simulation of picosecond laser heating of copper with electron heat capacity from ab initio calculation,” Chem. Phys. Lett., vol. 648, pp. 109–113, 2016. DOI: 10.1016/j.cplett.2016.02.003.
  • P. Ji and Y. Zhang, “Ab initio determination of effective electron–phonon coupling factor in copper,” Phys. Lett. A., vol. 380, pp. 1551–1555, 2016. DOI: 10.1016/j.physleta.2016.02.044.
  • P. Ji and Y. Zhang, “Multiscale modeling of femtosecond laser irradiation on copper film with electron thermal conductivity from ab initio calculation,” Numer. Heat Transf. Part A Appl., vol. 71, pp. 128–136, 2017. DOI: 10.1080/10407782.2016.1257305.
  • X. Y. Wang, D. M. Riffe, Y.-S. Lee, and M. C. Downer, “Time-resolved electron-temperature measurement in a highly excited gold target using femtosecond thermionic emission,” Phys. Rev. B, vol. 50, pp. 8016–8019, 1994. DOI: 10.1017/CBO9781107415324.004.
  • R. H. M. Groeneveld, R. Sprik, and A. Lagendijk, “Femtosecond spectroscopy of electron-electron and electron-phonon energy relaxation in Ag and Au,” Phys. Rev. B, vol. 51, pp. 11433–11445, 1995. DOI: 10.1103/PhysRevB.51.11433.
  • K. C. Mills, B. J. Monaghan, and B. J. Keene, “Thermal conductivities of molten metals: part 1 Pure metals,” Int. Mater. Rev., vol. 41, pp. 209–242, 1996. DOI: 10.1179/095066096790151358.
  • N. W. Ashcroft and N. D. Mermin. Solid State Physics. New York, NY: Holt, Rinehart and Winston, 1976.
  • S. Sonntag, C. T. Paredes, J. Roth, and H. R. Trebin, “Molecular dynamics simulations of cluster distribution from femtosecond laser ablation in aluminum,” Appl. Phys. A Mater. Sci. Process, vol. 104, pp. 559–565, 2011. DOI: 10.1007/s00339-011-6460-7.
  • T. Chan, “Stability analysis of finite difference schemes for the advection-diffusion equation,” SIAM J. Numer. Anal., vol. 21, pp. 272–284, 1984. DOI:10.1137/0721020.
  • D. S. Ivanov and L. V. Zhigilei, “Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films,” Phys. Rev. B, vol. 68, pp. 064114, 2003. DOI: 10.1103/PhysRevB.68.064114.
  • M. W. Finnis, P. Agnew, and A. J. E. Foreman, “Thermal excitation of electrons in energetic displacement cascades,” Phys. Rev. B, vol. 44, pp. 567–574, 1991. DOI: 10.1103/PhysRevB.44.567.
  • H. Hakkinen and U. Landman, “Superheating, melting, and annealing of copper surfaces,” Phys. Rev. Lett., vol. 71, pp. 1023–1026, 1993. DOI: 10.1103/PhysRevLett.71.1023.
  • C. Schäfer, H. Urbassek, and L. Zhigilei, “Metal ablation by picosecond laser pulses: A hybrid simulation,” Phys. Rev. B, vol. 66, pp. 115404, 2002. DOI: 10.1103/PhysRevB.66.115404.
  • A. M. Rutherford and D. M. Duffy, “The effect of electron-ion interactions on radiation damage simulations,” J. Phys. Condens. Matter, vol. 19, 496201, 2007. DOI: 10.1088/0953-8984/19/49/496201.
  • D. Duffy and A. Rutherford, “Including the effects of electronic stopping and electron–ion interactions in radiation damage simulations,” J. Phys. Condens. Matter, vol. 19, pp. 16207, 2007. DOI: 10.1088/0953-8984/19/1/016207.
  • H. W. Sheng, M. J. Kramer, A. Cadien, T. Fujita, and M. W. Chen, “Highly optimized embedded-atom-method potentials for fourteen FCC metals,” Phys. Rev. B, vol. 83, 134118, 2011. DOI: 10.1103/PhysRevB.83.134118.
  • P. Ji, Y. Zhang, and M. Yang, “Structural, dynamic, and vibrational properties during heat transfer in Si/Ge superlattices: a Car-Parrinello molecular dynamics study,” J. Appl. Phys, vol. 114, pp. 234905, 2013. DOI: 10.1063/1.4850935.
  • X. Gonze, et al., “ABINIT: first-principles approach to material and nanosystem properties,” Comput. Phys. Commun., vol. 180, pp. 2582–2615, 2009. DOI: 10.1016/j.cpc.2009.07.007.
  • J. Stadler, R. Mikulla, and H. Trebin, “IMD: A software package for molecular dynamics studies on parallel computers,” Int. J. Mod. Phys. C, vol. 8, pp. 1131–1140, 1997. DOI: 10.1142/S0129183197000990.
  • Z. Lin, L. V. Zhigilei, and V. Celli, “Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium,” Phys. Rev. B, vol. 77, pp. 075133, 2008. DOI: 10.1103/PhysRevB.77.075133.
  • G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Phys. Rev. B, vol. 47, pp. 558–561, 1993. DOI: 10.1103/PhysRevB.47.558.
  • V. Recoules, J. Clérouin, G. Zérah, P. M. M. Anglade, and S. Mazevet, “Effect of intense laser irradiation on the lattice stability of semiconductors and metals,” Phys. Rev. Lett., vol. 96, pp. 055503, 2006. DOI: 10.1103/PhysRevLett.96.055503.
  • E. Bévillon, J. P. Colombier, V. Recoules, and R. Stoian, “Free-electron properties of metals under ultrafast laser-induced electron-phonon nonequilibrium: A first-principles study,” Phys. Rev. B, vol. 89, pp. 115117, 2014. DOI: 10.1103/PhysRevB.89.115117.
  • B. Soediono, S. Y. Savrasov, and D. Y. Savrasov, “Electron-phonon interactions and related physical properties of metals from linear-response theory,” Phys. Rev. B, vol. 54, pp. 16487–16501, 1996. DOI: 10.1103/PhysRevB.54.16487.
  • R. Bauer, A. Schmid, P. Pavone, and D. Strauch, “Electron-phonon coupling in the metallic elements Al, Au, Na, and Nb: A first-principles study,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 57, pp. 11276–11282, 1998. DOI: 10.1103/PhysRevB.57.11276.
  • American Institute of Physics Handbook, 3rd ed. New York: McGraw-Hill, 1972.
  • A. Caffrey, P. Hopkins, J. Klopf, and P. Norris, “Thin film non-noble transition metal thermophysical properties,” Nanoscale. Microscale. Thermophys. Eng., vol. 9, pp. 365–377, 2005. DOI: 10.1080/10893950500357970.
  • A. M. Brown, R. Sundararaman, P. Narang, W. A. Goddard, and H. A. Atwater, “Ab initio phonon coupling and optical response of hot electrons in plasmonic metals,” Phys. Rev. B, vol. 94, 075120, 2016. DOI: 10.1103/PhysRevB.94.075120.
  • S. A. Gorbunov, N. A. Medvedev, P. N. Terekhin, and A. E. Volkov, “Electron-lattice coupling after high-energy deposition in aluminum,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. With Mater. Atoms., vol. 354, pp. 220–225, 2015. DOI: 10.1016/j.nimb.2014.11.053.
  • J. K. Chen, W. P. Latham, and J. E. Beraun, “The role of electron–phonon coupling in ultrafast laser heating,” J. Laser Appl., vol. 17, pp. 63, 2005. DOI: 10.1017/CBO9781107415324.004.
  • X. Zhu, “A new method for determining critical pulse width in laser material processing,” Appl. Surf. Sci., vol. 167, pp. 230–242, 2000. DOI: 10.1016/S0169-4332(00)00530-4.
  • S. Valette, R. Le Harzic, N. Huot, E. Audouard, and R. Fortunier, “2D calculations of the thermal effects due to femtosecond laser-metal interaction,” Appl. Surf. Sci., vol. 247, pp. 238–242, 2005. DOI: 10.1016/j.apsusc.2005.01.080.
  • S. Sonntag, J. Roth, F. Gaehler, and H. R. Trebin, “Femtosecond laser ablation of aluminium,” Appl. Surf. Sci., vol. 255, pp. 9742–9744, 2009. DOI: 10.1016/j.apsusc.2009.04.062.
  • H. Tang, M. Bai, Y. Dou, Q. Ran, and G. V. Lo, “Computer simulations of laser-induced melting of aluminum,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. With Mater. Atoms, vol. 301, pp. 36–40, 2013. DOI: 10.1016/j.nimb.2013.02.016.
  • D. S. Ivanov and B. Rethfeld, “The effect of pulse duration on the interplay of electron heat conduction and electron-phonon interaction: photo-mechanical versus photo-thermal damage of metal targets,” Appl. Surf. Sci., vol. 255, pp. 9724–9728, 2009. DOI: 10.1016/j.apsusc.2009.04.131.
  • J. L. Hostetler, A. N. Smith, D. M. Czajkowsky, and P. M. Norris, “Measurement of the electron-phonon coupling factor dependence on film thickness and grain size in Au, Cr, and Al,” Appl. Opt., vol. 38, pp. 3614, 1999. DOI: 10.1364/AO.38.003614.
  • B. Rethfeld, A. Kaiser, M. Vicanek, and G. Simon, “Ultrafast dynamics of nonequilibrium electrons in metals under femtosecond laser irradiation,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 65, pp. 2143031–21430311, 2002. DOI: 10.1103/PhysRevB.65.214303.
  • J. D. Honeycutt and H. C. Andemen, “Molecular dynamics study of melting and freezing of small lennard-jones clusters,” J. Phys. Chem., vol. 91, pp. 4950–4963, 1987. DOI: 10.1021/j100303a014.
  • R. R. Gattass, L. R. Cerami, and E. Mazur, “Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates,” Opt. Express, vol. 14, pp. 5279–5284, 2006. DOI: 10.1364/OE.14.005279.
  • Y. Rosandi and H. M. Urbassek, “Ultrashort-pulse laser irradiation of metal films: the effect of a double-peak laser pulse,” Appl. Phys. A Mater. Sci. Process, vol. 101, pp. 509–515, 2010. DOI: 10.1007/s00339-010-5888-5.
  • M. V. Shugaev, C. Y. Shih, E. T. Karim, C. Wu, and L. V. Zhigilei, “Generation of nanocrystalline surface layer in short pulse laser processing of metal targets under conditions of spatial confinement by solid or liquid overlayer,” Appl. Surf. Sci., vol. 417, pp. 54–63, 2017. DOI: 10.1016/j.apsusc.2017.02.030.
  • V. B. Fokin, M. E. Povarnitsyn, and P. R. Levashov, “Simulation of ablation and plume dynamics under femtosecond double-pulse laser irradiation of aluminum: comparison of atomistic and continual approaches,” Appl. Surf. Sci., vol. 396, pp. 1802–1807, 2017. DOI: 10.1016/j.apsusc.2016.11.208.
  • G. Norman, et al. “Nanomodification of gold surface by picosecond soft x-ray laser pulse,” J. Appl. Phys., vol. 112, pp. 013104, 2012. DOI: 10.1063/1.4731752.
  • C. Cheng and X. Xu, “Mechanisms of decomposition of metal during femtosecond laser ablation,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 72, 165415, 2005. DOI: 10.1103/PhysRevB.72.165415.
  • M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Oxford: Oxford University Press, 1987.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.