301
Views
3
CrossRef citations to date
0
Altmetric
Articles

Comparison between Grating Imaging and Transient Grating Techniques on Measuring Carrier Diffusion in Semiconductor

, , , , ORCID Icon, , & show all
Pages 348-359 | Received 02 May 2018, Accepted 18 Jul 2018, Published online: 15 Aug 2018

References

  • A. Miller, “Transient grating studies of carrier diffusion and mobility in semiconductors,” Nonlinear Opt. Semicond. II, vol. 59, pp. 287–312, 1998.
  • A. Cameron, P. Riblet, and A. Miller, “Spin gratings and the measurement of electron drift mobility in multiple quantum well semiconductors,” Phys. Rev. Lett., vol. 76, no. 25, pp.4793, 1996. DOI:10.1103/PhysRevLett.76.4793.
  • B. A. Ruzicka, L. K. Werake, H. Samassekou, and H. Zhao, “Ambipolar diffusion of photoexcited carriers in bulk GaAs,” Appl. Phys. Lett., vol. 97, no. 26, pp.262119, 2010. DOI:10.1063/1.3533664.
  • H. Zhao, M. Mower, and G. Vignale, “Ambipolar spin diffusion and D’yakonov-Perel’spin relaxation in GaAs quantum wells,” Phys. Rev. B, vol. 79, no. 11, pp.115321, 2009. DOI:10.1103/PhysRevB.79.115321.
  • K. Chen et al., “Measurement of ambipolar diffusion coefficient of photoexcited carriers with ultrafast reflective grating-imaging technique,” ACS Photonics, vol. 4, no. 6, pp. 1440–1446, 2017. DOI: 10.1021/acsphotonics.7b00187.
  • K. Chen et al., “Non-destructive measurement of photoexcited carrier transport in graphene with ultrafast grating imaging technique,” Carbon, vol. 107, pp. 233–239, 2016. DOI: 10.1016/j.carbon.2016.05.075.
  • P. Voehringer and N. F. Scherer, “Transient grating optical heterodyne detected impulsive stimulated Raman scattering in simple liquids,” J. Phys. Chem., vol. 99, no. 9, pp.2684–2695, 1995. DOI:10.1021/j100009a027.
  • S. Fujiyoshi, S. Takeuchi, and T. Tahara, “Time-resolved impulsive stimulated Raman scattering from excited-state polyatomic molecules in solution,” J. Phys. Chem. A, vol. 107, no. 4, pp.494–500, 2003. DOI:10.1021/jp0270856.
  • A. Maznev, K. Nelson, and J. Rogers, “Optical heterodyne detection of laser-induced gratings,” Opt. Lett., vol. 23, no. 16, pp.1319–1321, 1998. DOI:10.1364/OL.23.001319.
  • J. A. Johnson et al., “Phase-controlled, heterodyne laser-induced transient grating measurements of thermal transport properties in opaque material,” J. Appl. Phys., vol. 111, no. 2, pp. 023503, 2012. DOI: 10.1063/1.3675467.
  • T. Kim, D. Ding, J.-H. Yim, Y.-D. Jho, and A. J. Minnich, “Elastic and thermal properties of free-standing molybdenum disulfide membranes measured using ultrafast transient grating spectroscopy,” APL Materials, vol. 5, no. 8, pp.086105, 2017. DOI:10.1063/1.4999225.
  • L. Yang, et al., “Measurement of electron-hole friction in an n-doped GaAs/AlGaAs quantum well using optical transient grating spectroscopy,” Phys. Rev. Lett., vol. 106, no. 24, pp.247401, 2011. DOI:10.1103/PhysRevLett.106.247401.
  • K. Chen et al., “Carrier trapping by oxygen impurities in molybdenum diselenide,” ACS Appl. Mater. Interfaces, 2017. DOI: 10.1021/acsami.7b15478.
  • N. Kumar, et al., “Exciton-exciton annihilation in MoSe2 monolayers,” Phys. Rev. B, vol. 89, no. 12, pp.125427, 2014. DOI:10.1103/PhysRevB.89.125427.
  • G. Chen. Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons. Oxford University Press, 2005.
  • D. Chemla, D. Miller, P. Smith, A. Gossard, and W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron., vol. 20, no. 3, pp.265–275, 1984. DOI:10.1109/JQE.1984.1072393.
  • R. Wang, et al., “Ultrafast and spatially resolved studies of charge carriers in atomically thin molybdenum disulfide,” Phys. Rev. B, vol. 86, no. 4, pp.045406, 2012. DOI:10.1103/PhysRevB.86.045406.
  • H. Hillmer, A. Forchel, and C. Tu, “Enhancement of electron-hole pair mobilities in thin GaAs/AlxGa1−x As quantum wells,” Phys. Rev. B, vol. 45, no. 3, pp.1240, 1992. DOI:10.1103/PhysRevB.45.1240.
  • M. Achermann, et al., “Direct experimental observation of different diffusive transport regimes in semiconductor nanostructures,” Phys. Rev. B, vol. 60, no. 3, pp.2101, 1999. DOI:10.1103/PhysRevB.60.2101.
  • H. Akiyama, T. Matsusue, and H. Sakaki, “Carrier scattering and excitonic effects on electron-hole-pair diffusion in nondoped and p-type-modulation-doped GaAs/AlxGa1−xAs quantum-well structures,” Phys. Rev. B, vol. 49, no. 20, pp.14523, 1994. DOI:10.1103/PhysRevB.49.14523.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.