283
Views
1
CrossRef citations to date
0
Altmetric
Articles

Thermoelectric Properties of Single Crystal EuBiSe3 Fiber

, , , , &
Pages 200-210 | Received 09 Jul 2018, Accepted 06 Jan 2019, Published online: 21 Jan 2019

References

  • M. S. Dresselhaus, et al. “New directions for low-dimensional thermoelectric materials,” Adv. Mater., vol. 19, pp. 1043–1053, 2007. DOI: 10.1002/adma.200600527.
  • T. C. Harman, P. J. Taylor, M. P. Walsh, and B. E. Laforge, “Quantum dot superlattice thermoelectric materials and devices,” Science, vol. 297, pp. 2229–2232, 2002. DOI: 10.1126/science.1072886.
  • M. He, F. Qiu, and Z. Lin, “Towards high-performance polymer-based thermoelectric materials,” Energy Environ. Sci., vol. 6, pp. 1352–1361, 2013. DOI: 10.1039/c3ee24193a.
  • T. Pan, T. R. Gong, W. Yang, and Y. J. Wu, “Numerical study on the thermal stress and its formation mechanism of a thermoelectric device,” J. Therm. Sci., vol. 27, pp. 249–258, 2018. DOI: 10.1007/s11630-018-1006-3.
  • H. W. Ma, L. Shi, and Y. T. Tian, “Role of a single shield in thermocouple measurements in hot air flow,” J. Therm. Sci., vol. 26, pp. 523–532, 2017. DOI: 10.1007/s11630-017-0969-9.
  • T. M. Tritt, “Thermoelectric materials, phenomena, and applications: a bird’s eye view,” MRS Bull., vol. 31, pp. 188–198, 2006. DOI: 10.1557/mrs2006.44.
  • S. K. Mishra, S. Satpathy, and O. Jepsen, “Electronic structure and thermoelectric properties of bismuth telluride and bismuth selenide,” J. Phys.: Condens Matter., vol. 9, pp. 461–470, 1997.
  • A. A. Bayaz, A. Giani, A. Foucaran, F. Pascal-Delannoy, and A. Boyer, “Electrical and thermoelectrical properties of Bi2Se3 grown by metal organic chemical vapour deposition technique,” Thin Solid Films, vol. 441, pp. 1–5, 2003. DOI: 10.1016/S0040-6090(03)00675-8.
  • B. J. Stanbery, “Copper indium selenides and related materials for photovoltaic devices,” Crit. Rev. Solid State, vol. 27, pp. 73–117, 2002. DOI: 10.1080/20014091104215.
  • K. Kadel, L. Kumari, W. Z. Li, J. Y. Huang, and P. P. Provencio, “Synthesis and thermoelectric properties of Bi2Se3 nanostructures,” Nanoscale Res. Lett., vol. 6, pp. 57–63, 2011. DOI: 10.1007/s11671-010-9795-7.
  • Y. Min, et al. “Surfactant-free scalable synthesis of Bi2Te3 and Bi2Se3 nanoflakes and enhanced thermoelectric properties of their nanocomposites,” Adv. Mater., vol. 25, pp. 1425–1429, 2013. DOI: 10.1002/adma.201203764.
  • A. Soni, et al. “Enhanced thermoelectric properties of solution grown Bi2Te3–xSex nanoplatelet composites,” Nano Lett., vol. 12, pp. 1203–1209, 2012. DOI: 10.1021/nl2034859.
  • Y. F. Sun, et al. “Atomically thick bismuth selenide freestanding single layers achieving enhanced thermoelectric energy harvesting,” J. Am. Chem. Soc., vol. 134, pp. 20294–20297, 2012. DOI: 10.1021/ja3102049.
  • F. J. Disalvo, “Thermoelectric cooling and power generation,” Science, vol. 285, pp. 703–706, 1999.
  • P. S. Riseborough, “Theory of the dynamic magnetic response of Ce3Bi4Pt3: a heavy-fermion semiconductor,” Phys. Rev. B, vol. 45, pp. 13984–13995, 1992. DOI: 10.1103/PhysRevB.45.13984.
  • Y. H. Zhang, T. J. Zhu, J. P. Tu, and X. B. Zhao, “Flower-like nanostructure and thermoelectric properties of hydrothermally synthesized La-containing Bi2Te3 based alloys,” Mater. Chem. Phys., vol. 103, pp. 484–488, 2007. DOI: 10.1016/j.matchemphys.2007.02.059.
  • D. M. Rowe, G. Min, and L. Kuznestsov, “Electrical resistivity and Seebeck coefficient of hot-pressed YbAl3 over the temperature range 150–700 K,” Phil. Mag. Lett., vol. 77, pp. 105–108, 1998. DOI: 10.1080/095008398178679.
  • S. Forbes, Y. C. Tseng, and Y. Mozharivskyj, “Crystal cluster growth and physical properties of the EuSbSe3 and EuBiSe3 phases,” Inorg. Chem., vol. 54, pp. 815–820, 2015. DOI: 10.1021/ic501808y.
  • F. M. Schappacher, R. Pottgen, G. Bang Jin, and T. E. Albrecht-Schmitt, “151Eu and 121Sb Moessbauer spectroscopy of EuSbSe3 and EuBiSe3,” J. Solid State Chem., vol. 180, pp. 3035–3038, 2007. DOI: 10.1016/j.jssc.2007.08.014.
  • G. Bang Jin, S. J. Crerar, A. Mar, and T. E. Albrecht-Schmitt, “Syntheses, structures, and magnetic properties of the europium(II) selenido pnictogenates(III), EuPnSe3 (Pn=Sb, Bi),” J. Solid State Chem., vol. 179, pp. 1596–1601, 2006. DOI: 10.1016/j.jssc.2006.02.017.
  • W. G. Ma, et al. “A T-type method for characterization of the thermoelectric performance of an individual free-standing single crystal Bi2S3 nanowire,” Nanoscale, vol. 8, pp. 2704–2710, 2016. DOI: 10.1039/c5nr05946a.
  • X. Zhang, X. G. Shi, and W. G. Ma, “Development of multi-physical properties comprehensive measurement system for micro/nanoscale filamentary materials,” Sci. Sin. Technol., vol. 48, pp. 403–414, 2018.
  • T. T. Miao, W. G. Ma, X. Zhang, J. Q. Wei, and J. L. Sun, “Significantly enhanced thermoelectric properties of ultralong double-walled carbon nanotube bundle,” Appl. Phys. Lett., vol. 102, pp. 053105, 2013. DOI: 10.1063/1.4790190.
  • W. G. Ma, et al. “Systematic characterization of transport and thermoelectric properties of a macroscopic graphene fiber,” Nano Res., vol. 9, pp. 3536–3546, 2016. DOI: 10.1007/s12274-016-1231-6.
  • W. G. Ma, et al. “Chemically doped macroscopic graphene fibers with significantly enhanced thermoelectric properties,” Nano Res., vol. 11, pp. 741–750, 2016. DOI: 10.1007/s12274-017-1683-3.
  • T. T. Miao, et al. “Integrative characterization of the thermoelectric performance of an individual multiwalled carbon nanotube,” J. Appl. Phys., vol. 120, pp. 124302, 2016. DOI: 10.1063/1.4962942.
  • B. C. Sales, D. Mandrus, B. C. Chakoumakos, V. Keppens, and J. R. Thompson, “Filled skutterudite antimonides: electron crystals and phonon glasses,” Phys. Rev. B, vol. 56, pp. 15081–15089, 1997. DOI: 10.1103/PhysRevB.56.15081.
  • P. G. Klemens, “Theory of the a-plane thermal conductivity of graphite,” Wide Bandgap Mater., vol. 7, pp. 332–339, 2000. DOI: 10.1106/7FP2-QBLN-TJPA-NC66.
  • P. G. Klemens, “Theory of thermal conduction in thin ceramic films,” Int. J. Thermophys., vol. 22, pp. 265–275, 2001. DOI: 10.1023/A:1006776107140.
  • X. F. Qiu, L. N. Austin, P. A. Muscarella, J. S. Dyck, and C. B. Prof, “Nanostructured Bi2Se3 films and their thermoelectric transport properties,” Angew. Chem., vol. 45, pp. 5656–5659, 2006. DOI: 10.1002/anie.200600848.
  • J. Navrátil, et al. “Conduction band splitting and transport properties of Bi2Se3,” J. Solid State Chem., vol. 177, pp. 1704–1712, 2004. DOI: 10.1016/j.jssc.2003.12.031.
  • S. Johnsen, et al. “Nanostructures boost the thermoelectric performance of PbS,” J. Am. Chem. Soc., vol. 133, pp. 3460–3470, 2011. DOI: 10.1021/ja109138p.
  • Y. X. Wang, et al. “Terahertz photodetector based on double-walled carbon nanotube macrobundle-metal contacts,” Opt. Express, vol. 23, pp. 13348–13357, 2015. DOI: 10.1364/OE.23.013348.
  • J. P. Heremans, et al. “Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states,” Science, vol. 321, pp. 554–557, 2008. DOI: 10.1126/science.1159725.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.