193
Views
10
CrossRef citations to date
0
Altmetric
Articles

Thermal Resistance by Transition Between Collective and Non-Collective Phonon Flows in Graphitic Materials

, &
Pages 247-258 | Received 17 Dec 2018, Accepted 18 Jan 2019, Published online: 07 Feb 2019

References

  • R. A. Guyer and J. A. Krumhansl, “Thermal conductivity, second sound, and phonon hydrodynamic phenomena in nonmetallic crystals,” Phys. Rev., vol. 148, 1966. DOI: 10.1103/PhysRev.148.778.
  • R. A. Guyer and J. A. Krumhansl, “Solution of the linearized phonon Boltzmann equation,” Phys. Rev., vol. 148, 1966. DOI: 10.1103/PhysRev.148.766.
  • L. Mezhov-Deglin, “measurement of the thermal conductivity of crystalline he4,” j. Exp. Theor. Phys, vol. 49, 1965. 66-79
  • H. E. Jackson, C. T. Walker, and T. F. McNelly, “Second sound in NaF,” Phys. Rev. Lett., vol. 25, 1970. DOI: 10.1103/PhysRevLett.25.26.
  • S. Lee, D. Broido, K. Esfarjani, and G. Chen, “Hydrodynamic phonon transport in suspended graphene,” Nat. Commun., vol. 6:6290, 2015. DOI: 10.1038/ncomms7290.
  • A. Cepellotti, et al., “Phonon hydrodynamics in two-dimensional materials,” Nat. Commun., vol. 6, 2015. DOI: 10.1038/ncomms7400.
  • S. Lee and L. Lindsay, “Hydrodynamic phonon drift and second sound in a (20,20) single-wall carbon nanotube,” Phys. Rev. B, vol. 95, 2017. DOI: 10.1103/PhysRevB.95.184304.
  • Z. Ding, et al., “Phonon hydrodynamic heat conduction and knudsen minimum in graphite,” Nano Lett., vol. 18, 2018. DOI: 10.1021/acs.nanolett.8b00003.
  • L. Lindsay, D. A. Broido, and N. Mingo, “Flexural phonons and thermal transport in graphene,” Phys. Rev. B, vol. 82, 2010. DOI: 10.1103/PhysRevB.82.115427.
  • R. E. Peierls. Quantum Theory of Solids. New York, USA: Oxford University Press, 1955.
  • R. Gurzhi, “thermal conductivity of dielectrics and ferrodielectrics at low temperatures,” j. Exp. Theor. Phys., vol. 46, 1964. 719–724
  • X. Li, and S. Lee, “role of hydrodynamic viscosity on phonon transport in suspended graphene,” phys. Rev. B, Vol. 97, 2018.094309 doi:10.1103/PhysRevB.97.094309
  • J. A. Sussmann and A. Thellung, “Thermal conductivity of perfect dielectric crystals in the absence of umklapp processes,” Proc. Phys. Soc., vol. 81, pp. 1122–1130, 1963. DOI: 10.1088/0370-1328/81/6/318.
  • G. Fugallo, M. Lazzeri, L. Paulatto, and F. Mauri, “Ab initio variational approach for evaluating lattice thermal conductivity,” Phys. Rev. B, vol. 88, 2013. DOI: 10.1103/PhysRevB.88.045430.
  • A. Ward, D. A. Broido, D. A. Stewart, and G. Deinzer (2009). Ab initio theory of the lattice thermal conductivity in diamond. Physical Review B, 80(12), 125203. doi:10.1103/PhysRevB.80.125203
  • J.-P. M. Péraud and N. G. Hadjiconstantinou, “Efficient simulation of multidimensional phonon transport using energy-based variance-reduced Monte Carlo formulations,” Phys. Rev. B, vol. 84, 2011. DOI: 10.1103/PhysRevB.84.205331.
  • Y. Guo and M. Wang, “Heat transport in two-dimensional materials by directly solving the phonon Boltzmann equation under callaway’s dual relaxation model,” Phys. Rev. B, vol. 96, 2017. DOI: 10.1103/PhysRevB.96.134312.
  • C. D. Landon and N. G. Hadjiconstantinou, “Deviational simulation of phonon transport in graphene ribbons with ab initio scattering,” J. Appl. Phys., vol. 116, pp. 163502, 2014. DOI: 10.1063/1.4898090.
  • S. Mazumder and A. Majumdar, “Monte carlo study of phonon transport in solid thin films including dispersion and polarization,” J. Heat. Transfer, vol. 123, pp. 749, 2001. DOI: 10.1115/1.1377018.
  • Q. Hao, G. Chen, and M.-S. Jeng, “Frequency-dependent Monte Carlo simulations of phonon transport in two-dimensional porous silicon with aligned pores,” J. Appl. Phys., vol. 106, pp. 114321, 2009. DOI: 10.1063/1.3266169.
  • C. Cercignani and A. Daneri, “Flow of a rarefied gas between two parallel plates,” J. Appl. Phys., vol. 34, pp. 3509–3513, 1963. DOI: 10.1063/1.1729249.
  • X. Li and S. Lee, “Crossover of ballistic, hydrodynamic, and diffusive phonon transport,” arXiv preprint arXiv:1811.04329, 2018.
  • R. Yang, S. Yue, and B. Liao, “Hydrodynamic phonon transport between non-hydrodynamic contacts,” arXiv preprint arXiv:1806.07345, 2018.
  • L. Lindsay and D. A. Broido, “Optimized tersoff and brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene,” Phys. Rev. B, vol. 81, 2010. DOI: 10.1103/PhysRevB.81.205441.
  • G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B, vol. 54, pp. 11169–11186, 1996. DOI: 10.1103/PhysRevB.54.11169.
  • P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B, vol. 50, pp. 17953–17979, 1994. DOI: 10.1103/PhysRevB.50.17953.
  • J. P. Perdew and A. Zunger, “Self-interaction correction to density-functional approximations for many-electron systems,” Phys. Rev. B, vol. 23, pp. 5048–5079, 1981. DOI: 10.1103/PhysRevB.23.5048.
  • A. Togo and I. Tanaka, “First principles phonon calculations in materials science,” Scr. Mater., vol. 108, pp. 1–5, 2015. DOI: 10.1016/j.scriptamat.2015.07.021.
  • J. M. Ziman, Electrons and Phonons: The Theory of Transport Phenomena in Solids. UK: Oxford University Press, 1960.
  • T. Feng and X. Ruan, “Four-phonon scattering reduces intrinsic thermal conductivity of graphene and the contributions from flexural phonons,” Phys. Rev. B, vol. 97, 2018. DOI: 10.1103/PhysRevB.97.045202.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.