799
Views
11
CrossRef citations to date
0
Altmetric
Articles

Picosecond transient thermoreflectance for thermal conductivity characterization

ORCID Icon, , , , , & show all
Pages 211-221 | Received 09 Oct 2018, Accepted 05 Feb 2019, Published online: 22 Feb 2019

References

  • C. A. Paddock and G. L. Eesley, “Transient thermoreflectance from thin metal films,” J. Appl. Phys., vol. 60, no. 1, pp. 285–290, Jul. 1986. DOI: 10.1063/1.337642.
  • D. G. Cahill, “Analysis of heat flow in layered structures for time-domain thermoreflectance,” Rev. Sci. Instrum., vol. 75, no. 12, pp. 5119–5122, Dec. 2004. DOI: 10.1063/1.1819431.
  • A. J. Schmidt, R. Cheaito, and M. Chiesa, “A frequency-domain thermoreflectance method for the characterization of thermal properties,” Rev. Sci. Instrum., vol. 80, no. 9, pp. 094901–6, Sep. 2009. DOI: 10.1063/1.3212673.
  • A. J. Schmidt, R. Cheaito, and M. Chiesa, “Characterization of thin metal films via frequency-domain thermoreflectance,” J. Appl. Phys., vol. 107, no. 2, pp. 024908–6, Jan. 2010. DOI: 10.1063/1.3289907.
  • K. T. Regner, et al. “Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance,” Nat. Commun., vol. 4. pp. 1640–1647, Mar. 2013. DOI:10.1038/ncomms2630.
  • R. Garrelts, A. Marconnet, and X. Xu, “Assessment of thermal properties via nanosecond thermoreflectance method,” Nanosc. Microsc. Therm. Eng., vol. 19, no. 4, pp. 245–257, Dec. 2015. DOI: 10.1080/15567265.2015.1078425.
  • O. W. Kading, H. Skurk, A. A. Maznev, and E. Matthias, “Transient thermal gratings at surfaces for thermal characterization of bulk materials and thin films,” Appl. Phys. A., vol. 61, pp. 253–261, Apr. 1995. DOI: 10.1007/BF01538190.
  • A. A. Maznev, J. A. Rogers, and K. A. Nelson, “Optical heterodyne detection of laser-induced gratings,” Opt. Lett., vol. 23, no. 16, pp. 1319–1321, Aug. 1998. DOI: 10.1364/OL.23.001319.
  • J. Jeong, et al. “In-plane thermal conductivity measurement with nanosecond grating imaging technique,” Nanosc. Microsc. Therm. Eng., vol. 22, no. 2, 83–96. Feb. 2018. DOI: 10.1080/15567265.2017.1416713.
  • W. S. Capinski and H. J. Maris, “Improved apparatus for picosecond pump‐and‐probe optical measurements,” Rev. Sci. Instrum., vol. 67, no. 8, pp. 2720–2726, Aug. 1996. DOI: 10.1063/1.1147100.
  • P. Jiang, X. Qian, and R. Yang, “Time-domain thermoreflectance (TDTR) measurements of anisotropic thermal conductivity using a variable spot size approach,” Rev. Sci. Instrum., vol. 88, no. 7, pp. 074901–9, Jul. 2017. DOI: 10.1063/1.4991715.
  • R. B. Wilson, B. A. Apgar, L. W. Martin, and D. G. Cahill, “Thermoreflectance of metal transducers for optical pump-probe studies of thermal properties,” Opt. Express, vol. 20, no. 27, pp.28829–10, 2012. DOI: 10.1364/OE.20.028829.
  • P. Jiang, X. Qian, X. Gu, and R. Yang, “Probing anisotropic thermal conductivity of transition metal dichalcogenides MX 2(M = Mo, W and X = S, Se) using time-domain thermoreflectance,” Adv. Mater., vol. 29, no. 36, pp. 1701068–7, Jul. 2017. DOI: 10.1002/adma.201700681.
  • K. K. Ng, Complete Guide to Semiconductor Devices, New York, John Wiley & Sons, Inc.,1995.
  • S. M. Sze and K. K. Ng, Physics of Semiconductor Devices. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2006.
  • L. Guo, S. L. Hodson, T. S. Fisher, and X. Xu, “Heat transfer across metal-dielectric interfaces during ultrafast-laser heating,” J. Heat Transfer, vol. 134, no. 4, pp. 042402, Apr. 2012. DOI: 10.1115/1.4005255.
  • Y. S. Touloukian, R. W. Powell, C. Y. Ho, and P. G. Klemens. Thermophysical properties of matter - The TPRC data series. Therm. Conductivity - Metall. Ele. Alloys, vol. 1, pp. 132 Jan. 1970.
  • Y. S. Touloukian and E. H. Buyco. Thermophysical properties of matter - The TPRC data series. Specific Heat - Metall. Ele. Alloys, vol. 4, pp. 83, Jan. 1971.
  • J. Yang, E. Ziade, and A. J. Schmidt, “Uncertainty analysis of thermoreflectance measurements,” Rev. Sci. Instrum., vol. 87, no. 1, pp. 014901–014912, Jan. 2016. DOI: 10.1063/1.4962023.
  • J. Liu, G.-M. Choi, and D. G. Cahill, “Measurement of the anisotropic thermal conductivity of molybdenum disulfide by the time-resolved magneto-optic Kerr effect,” J. Appl. Phys., vol. 116, no. 23, pp. 233107, Dec. 2014. DOI: 10.1063/1.4904513.
  • C. Muratore, et al. “Cross-plane thermal properties of transition metal dichalcogenides,” Appl. Phys. Lett., vol. 102, no. 8, pp. 081604, 2013. DOI: 10.1063/1.4793203.
  • A. N. Smith, J. L. Hostetler, and P. M. Norris, “Thermal boundary resistance measurements using a transient thermoreflectance technique,” Microsc. Therm. Eng., vol. 4, no. 1, pp. 51–60, Oct 2010.
  • E. Bozorg-Grayeli, J. P. Reifenberg, M. A. Panzer, J. A. Rowlette, and K. E. Goodson, “Temperature-dependent thermal properties of phase-change memory electrode materials,” IEEE Electron Device Lett., vol. 32, no. 9, pp. 1281–1283, Aug. 2011. DOI: 10.1109/LED.2011.2158796.
  • R. J. Stevens, A. N. Smith, and P. M. Norris, “Measurement of thermal boundary conductance of a series of metal-dielectric interfaces by the transient thermoreflectance technique,” J. Heat Transfer, vol. 127, no. 3, pp.315–318, 2005. DOI: 10.1115/1.1857944.
  • R. J. Stoner and H. J. Maris, “Kapitza conductance and heat flow between solids at temperatures from 50 to 300 K,” Phys. Rev. B, vol. 48, no. 22, pp. 16373–15, Dec. 1993. DOI: 10.1103/PhysRevB.48.16373.
  • D. O. Lindroth and P. Erhart, “Thermal transport in van der Waals solids from first-principles calculations,” Phys. Rev. B, vol. 94, no. 11, pp. 1060–11, Sep. 2016. DOI: 10.1103/PhysRevB.94.115205.
  • X. Gu, B. Li, and R. Yang, “Layer thickness-dependent phonon properties and thermal conductivity of MoS 2,” J. Appl. Phys., vol. 119, no. 8, pp. 085106, Feb. 2016. DOI: 10.1063/1.4942827.
  • W. Li, J. Carrete, and N. Mingo, “Thermal conductivity and phonon linewidths of monolayer MoS2 from first principles,” Appl. Phys. Lett., vol. 103, no. 25, pp. 253103, Dec. 2013. DOI: 10.1063/1.4850995.
  • Y. Cai, J. Lan, G. Zhang, and Y.-W. Zhang, “Lattice vibrational modes and phonon thermal conductivity of monolayer MoS2,” Phys. Rev. B., vol. 89, pp. 035438, Jan 2014. DOI: 10.1103/PhysRevB.89.035438.
  • X. Wei, et al. “Phonon thermal conductivity of monolayer MoS2: a comparison with single layer graphene,” Appl. Phys. Lett., vol. 105, no. 10, 103902.Sep. 2014. DOI: 10.1063/1.4895344.
  • J. Su, Z.-T. Liu, L.-P. Feng, and N. Li, “Effect of temperature on thermal properties of monolayer MoS2 sheet,” J. Alloys. Compd., vol. 622, pp. 777–782, 2015. DOI: 10.1016/j.jallcom.2014.10.191.
  • R. Mao, B. D. Kong, and K. W. Kim, “Thermal transport properties of metal/MoS 2interfaces from first principles,” J. Appl. Phys., vol. 116, no. 3, pp. 034302, Jul. 2014. DOI: 10.1063/1.4890347.
  • A. J. Schmidt, K. C. Collins, A. J. Minnich, and G. Chen, “Thermal conductance and phonon transmissivity of metal–graphite interfaces,” J. Appl. Phys., vol. 107, no. 10, pp. 104907–6, May. 2010. DOI: 10.1063/1.3428464.
  • S. J. Maddox, S. D. March, and S. R. Bank, “Broadly tunable alInAsSb digital alloys grown on GaSb,” Cryst. Growth Des., vol. 16, no. 7, pp. 3582–3586, May. 2016. DOI: 10.1021/acs.cgd.5b01515.
  • M. E. Woodson, et al., “Low-noise AlInAsSb avalanche photodiode,” Appl. Phys. Lett., vol. 108, no. 8, pp. 081102, Feb. 2016. DOI: 10.1063/1.4942372.
  • M. S. Abrahams, R. Braunstein, and F. D. Rosi, “Thermal, electrical and optical properties of (In,Ga)as alloys,” J. Phys. Chem. Solid., vol. 10, no. 2, pp.204–210, 1959. DOI: 10.1016/0022-3697(59)90076-9.
  • F. Szmulowicz, F. L. Madarasz, P. G. Klemens, and J. Diller, “Calculation of the lattice thermal conductivity in GaAs‐InAs alloys and comparison with experiment,” J. Appl. Phys., vol. 66, no. 1, pp. 252–255, Jul. 1989. DOI: 10.1063/1.343865.
  • Y. K. Koh and D. G. Cahill, “Frequency dependence of the thermal conductivity of semiconductor alloys,” Phys. Rev. B, vol. 76, no. 7, pp. 075207–5, Aug. 2007. DOI: 10.1103/PhysRevB.76.075207.
  • T. L. A. J. G. A. J. S. A. K. E. A. G. Chen, “Gallium arsenide thermal conductivity and optical phonon relaxation times from first-principles calculations,” EPL (Europhysics Letters), vol. 101, no. 1, pp.16001, 2013. DOI: 10.1209/0295-5075/101/16001.
  • F. Zhou, et al. “Thermal conductivity of indium arsenide nanowires with wurtzite and zinc blende phases,” Phys. Rev. B., vol. 83, no. 20, pp. 205416, EP, May, 2011. DOI: 10.1103/PhysRevB.83.205416.
  • G. Chen, “Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices,” Phys. Rev. B, vol. 57, no. 23, pp. 14958–16, Jun. 1998. DOI: 10.1103/PhysRevB.57.14958.
  • F. He, W. Wu, and Y. Wang, “Direct measurement of coherent thermal phonons in Bi2Te3/Sb2Te3 superlattice,” Appl. Phys. A, vol. 122, no. 8, pp.777, 2016. DOI: 10.1007/s00339-016-0309-z.
  • R. Venkatasubramanian, “Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures,” Phys. Rev. B, vol. 61, no. 4, pp. 3091–3097, Jan. 2000. DOI: 10.1103/PhysRevB.61.3091.
  • J. P. Feser and D. G. Cahill, “Probing anisotropic heat transport using time-domain thermoreflectance with offset laser spots,” Rev. Sci. Instrum., vol. 83, no. 10, pp. 104901, Oct. 2012. DOI: 10.1063/1.4757863.
  • K. Chen, et al., “Comparison between grating imaging and transient grating techniques on measuring carrier diffusion in semiconductor,” Nanosc. Microsc. Therm. Eng., vol. 22, no. 4, pp. 348–359, Aug. 2018.
  • J. Liu, et al., “Simultaneous measurement of thermal conductivity and heat capacity of bulk and thin film materials using frequency-dependent transient thermoreflectance method,” Rev. Sci. Instrum., vol. 84, no. 3, pp. 034902–13, Mar. 2013. DOI: 10.1063/1.4797479.
  • C. Wei, X. Zheng, D. G. Cahill, and J.-C. Zhao, “Invited article: micron resolution spatially resolved measurement of heat capacity using dual-frequency time-domain thermoreflectance,” Rev. Sci. Instrum., vol. 84, no. 7, pp. 071301, Jul. 2013. DOI: 10.1063/1.4815867.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.