659
Views
8
CrossRef citations to date
0
Altmetric
Articles

Electric Field Controlled Heat Transfer Through Silicon and Nano-confined Water

& ORCID Icon
Pages 304-316 | Received 18 Apr 2019, Accepted 02 Jun 2019, Published online: 19 Jun 2019

References

  • K. M. Razeeb, E. Dalton, G. L. W. Cross, and A. J. Robinson, “Present and future thermal interface materials for electronic devices,” Int. Mater.Rev., vol. 63, no. 1, pp.1–21, 2018. DOI: 10.1080/09506608.2017.1296605.
  • B. Li, K. T. Tan, and J. Christensen, “Tailoring the thermal conductivity in nanophononic metamaterials,” Phys. Rev. B, vol. 95, no. 14, pp.144305, 2017. DOI: 10.1103/PhysRevB.95.144305.
  • M. Nomura, J. Shiomi, T. Shiga, and R. Anufriev, “Thermal phonon engineering by tailored nanostructures,” Jpn J. Appl. Phys., vol. 57, no. 8, pp.080101, 2018. DOI: 10.7567/JJAP.57.080101.
  • A. R. Motezakker, et al., “Optimum ratio of hydrophobic to hydrophilic areas of biphilic surfaces in thermal fluid systems involving boiling,” Int. J. Heat Mass Transf., vol. 135, pp. 164–174, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.01.139.
  • A. R. Betz, J. Jenkins, and D. Attinger, “Boiling heat transfer on superhydrophilic, superhydrophobic, and superbiphilic surfaces,” Int. J. Heat Mass Transf., vol. 57, no. 2, pp.733–741, 2013. DOI: 10.1016/j.ijheatmasstransfer.2012.10.080.
  • B. B. Wang, X. D. Wang, T. H. Wang, G. Lu, and W. M. Yan, “Enhancement of boiling heat transfer of thin water film on an electrified solid surface,” Int. J. Heat Mass Transf., vol. 109, pp. 410–416, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.02.029.
  • A. Shahriari, P. Birbarah, J. Oh, N. Miljkovic, and V. Bahadur, “Electric field–based control and enhancement of boiling and condensation,” Nanoscale Microscale Thermophys. Eng., vol. 21, no. 2, pp.102–121, 2017. DOI: 10.1080/15567265.2016.1253630.
  • A. Sur, Y. Lu, C. Pascente, P. Ruchhoeft, and D. Liu, “Pool boiling heat transfer enhancement with electrowetting,” Int. J. Heat Mass Transf., vol. 120, pp. 202–217, 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.12.029.
  • F. Mugele and J. C. Baret, “Electrowetting: from basics to applications,” J. phys. condens. matter, vol. 17, no. 28, pp.R705, 2005.
  • D. Orejon, K. Sefiane, and M. E. Shanahan, “Young-Lippmann equation revisited for nano-suspensions,” Appl. Phys. Lett., vol. 102, no. 20, pp.201601, 2013. DOI: 10.1063/1.4807120.
  • C. D. Daub, D. Bratko, K. Leung, and A. Luzar, “Electrowetting at the nanoscale,” J. Phys. Chem. C, vol. 111, no. 2, pp.505–509, 2007. DOI: 10.1021/jp067395e.
  • A. M. J. Edwards, C. V. Brown, M. I. Newton, and G. McHale, “Dielectrowetting: the past, present and future,” Curr. Opin. Colloid Interface Sci., vol. 36, pp. 28–36, 2018. DOI: 10.1016/j.cocis.2017.11.005.
  • F. H. Song, B. Q. Li, and C. Liu, “Molecular dynamics simulation of nanosized water droplet spreading in an electric field,” Langmuir, vol. 29, no. 13, pp.4266–4274, 2013. DOI: 10.1021/la304763a.
  • M. W. Lee, S. S. Latthe, A. L. Yarin, and S. S. Yoon, “Dynamic electrowetting-on-dielectric (DEWOD) on unstretched and stretched Teflon,” Langmuir, vol. 29, no. 25, pp.7758–7767, 2013. DOI: 10.1021/la401669w.
  • T. H. Yen, “Investigation of the effects of perpendicular electric field and surface morphology on nanoscale droplet using molecular dynamics simulation,” Mol. Simul., vol. 38, no. 6, pp.509–517, 2012. DOI: 10.1080/08927022.2011.633257.
  • W. D. Luedtke, J. Gao, and U. Landman, “Dielectric nanodroplets: structure, stability, thermodynamics, shape transitions and electrocrystallization in applied electric fields,” J. Phys. Chem. C, vol. 115, no. 42, pp.20343–20358, 2011. DOI: 10.1021/jp206673j.
  • X. Zhu, Q. Yuan, and Y. P. Zhao, “Phase transitions of a water overlayer on charged graphene: from electromelting to electrofreezing,” Nanoscale, vol. 6, no. 10, pp.5432–5437, 2014. DOI: 10.1039/c3nr06596k.
  • S. Wei, X. Xiaobin, Z. Hong, and X. Chuanxiang, “Effects of dipole polarization of water molecules on ice formation under an electrostatic field,” Cryobiology, vol. 56, no. 1, pp.93–99, 2008. DOI: 10.1016/j.cryobiol.2007.10.173.
  • R. Zangi and A. E. Mark, “Electrofreezing of confined water,” J. Chem. Phys., vol. 120, no. 15, pp.7123–7130, 2004. DOI: 10.1063/1.1687315.
  • J. Y. Yan and G. N. Patey, “Molecular dynamics simulations of ice nucleation by electric fields,” J. Phys. Chem. A, vol. 116, no. 26, pp.7057–7064, 2012. DOI: 10.1021/jp3039187.
  • O. Teschke, “Imaging ice-like structures formed on HOPG at room temperature,” Langmuir, vol. 26, no. 22, pp.16986–16990, 2010. DOI: 10.1021/la103227j.
  • K. B. Jinesh and J. W. M. Frenken, “Experimental evidence for ice formation at room temperature,” Phys. Rev. Lett., vol. 101, no. 3, pp.036101, 2008. DOI: 10.1103/PhysRevLett.101.036101.
  • J. F. Ihlefeld, et al., “Room-temperature voltage tunable phonon thermal conductivity via reconfigurable interfaces in ferroelectric thin films,” Nano Lett., vol. 15, no. 3, pp.1791–1795, 2015. DOI: 10.1021/nl504505t.
  • J. A. Seijas-Bellido, H. Aramberri, J. Íñiguez, and R. Rurali, “Electric control of the heat flux through electrophononic effects,” Phys. Rev. B, vol. 97, no. 18, pp.184306, 2018. DOI: 10.1103/PhysRevB.97.184306.
  • W. Evans, J. Fish, and P. Keblinski, “Thermal conductivity of ordered molecular water,” J. Chem. Phys., vol. 126, no. 15, pp.154504, 2007. DOI: 10.1063/1.2723071.
  • G. L. Pollack, “Kapitza resistance,” Rev. Mod. Phys., vol. 41, no. 1, pp.48, 1969. DOI: 10.1103/RevModPhys.41.48.
  • J. D. N. Cheeke, “The kapitza resistance and heat transfer at low temperatures,” Le Journal de Physique Colloques, vol. 31, no. C3, pp.C3–C129, 1970. DOI: 10.1051/jphyscol:1970312.
  • A. T. Pham, M. Barisik, and B. Kim, “Molecular dynamics simulations of Kapitza length for argon-silicon and water-silicon interfaces,” Int. J. Precision Eng. Manuf., vol. 15, no. 2, pp.323–329, 2014. DOI: 10.1007/s12541-014-0341-x.
  • Z. Ge, D. G. Cahill, and P. V. Braun, “Thermal conductance of hydrophilic and hydrophobic interfaces,” Phys. Rev. Lett., vol. 96, no. 18, pp.186101, 2006. DOI: 10.1103/PhysRevLett.96.186101.
  • Z. Shi, M. Barisik, and A. Beskok, “Molecular dynamics modeling of thermal resistance at argon-graphite and argon-silver interfaces,” Int. J.Ther. Sci., vol. 59, pp. 29–37, 2012. DOI: 10.1016/j.ijthermalsci.2012.04.009.
  • M. Barisik and A. Beskok, “Temperature dependence of thermal resistance at the water/silicon interface,” Int. J.Ther. Sci., vol. 77, pp. 47–54, 2014. DOI: 10.1016/j.ijthermalsci.2013.10.012.
  • M. Barisik and A. Beskok, “Boundary treatment effects on molecular dynamics simulations of interface thermal resistance,” J Comput. Phys., vol. 231, no. 23, pp.7881–7892, 2012. DOI: 10.1016/j.jcp.2012.07.026.
  • T. Q. Vo, M. Barisik, and B. Kim, “Atomic density effects on temperature characteristics and thermal transport at grain boundaries through a proper bin size selection,” J. Chem. Phys., vol. 144, no. 19, pp.194707, 2016. DOI: 10.1063/1.4949763.
  • A. Pham, M. Barisik, and B. Kim, “Pressure dependence of Kapitza resistance at gold/water and silicon/water interfaces,” J. Chem. Phys., vol. 139, no. 24, pp.244702, 2013. DOI: 10.1063/1.4851395.
  • Y. Hong, L. Li, X. C. Zeng, and J. Zhang, “Tuning thermal contact conductance at graphene–copper interface via surface nanoengineering,” Nanoscale, vol. 7, no. 14, pp.6286–6294, 2015. DOI: 10.1039/c5nr00564g.
  • Z. Liang, K. Sasikumar, and P. Keblinski, “Thermal transport across a substrate–thin-film interface: effects of film thickness and surface roughness,” Phys. Rev. Lett., vol. 113, no. 6, pp.065901, 2014. DOI: 10.1103/PhysRevLett.113.065901.
  • X. Liu, G. Zhang, and Y. W. Zhang, “Topological defects at the graphene/h-BN interface abnormally enhance its thermal conductance,” Nano Lett., vol. 16, pp. 4954–4959, 2016.
  • A. T. Pham, M. Barisik, and B. Kim, “Interfacial thermal resistance between the graphene-coated copper and liquid water,” Int. J. Heat Mass Transf., vol. 97, pp. 422–431, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.02.040.
  • J. Zhang, et al., “Molecular dynamics simulation of the interfacial thermal resistance between phosphorene and silicon substrate,” Int. J. Heat Mass Transf., vol. 104, pp. 871–877, 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.08.021.
  • A. Y. Nobakht and S. Shin, “Anisotropic control of thermal transport in graphene/Si heterostructures,” J. Appl. Phys., vol. 120, no. 22, pp.225111, 2016. DOI: 10.1063/1.4971873.
  • O. Yenigun and M. Barisik, “Effect of nano-film thickness on thermal resistanec at water silicon interface,” Int. J. Heat Mass Transf., vol. 134, pp. 634–640, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.01.075.
  • A. T. Celebi, M. Barisik, and A. Beskok, “Electric field controlled transport of water in graphene nano-channels,” J. Chem. Phys., vol. 147, no. 16, pp.164311, 2017. DOI: 10.1063/1.4996210.
  • A. T. Celebi, M. Barisik, and A. Beskok, “Surface charge-dependent transport of water in graphene nano-channels,” Microfluid. Nanofluid., vol. 22, no. 1, pp.7, 2018. DOI: 10.1007/s10404-017-2027-z.
  • F. H. Stillinger and T. A. Weber, “Computer simulation of local order in condensed phases of silicon,” Phys. Rev. B, vol. 31, no. 8, pp.5262, 1985. DOI: 10.1103/PhysRevB.31.5262.
  • M. Barisik and A. Beskok, “Wetting characterisation of silicon (1, 0, 0) surface,” Mol. Simul., vol. 39, no. 9, pp.700–709, 2013. DOI: 10.1080/08927022.2012.758854.
  • I. Braslavsky and S. G. Lipson, “Electrofreezing effect and nucleation of ice crystals in free growth experiments,” Appl. Phys. Lett., vol. 72, no. 2, pp.264–266, 1998. DOI: 10.1063/1.120705.
  • P. Šunka, “Pulse electrical discharges in water and their applications,” Phys. Plasmas., vol. 8, no. 5, pp.2587–2594, 2001. DOI: 10.1063/1.1356742.
  • H. Somada, K. Hirahara, S. Akita, and Y. Nakayama, “A molecular linear motor consisting of carbon nanotubes,” Nano Lett., vol. 9, no. 1, pp.62–65, 2008. DOI: 10.1021/nl802323n.
  • S. Jones, D. Andrén, P. Karpinski, and M. KäLl, “Photothermal heating of plasmonic nanoantennas: influence on trapped particle dynamics and colloid distribution,” ACS Photonics, vol. 5, no. 7, pp.2878–2887, 2018. DOI: 10.1021/acsphotonics.8b00231.
  • B. Dieny, et al., “Impact of intergrain spin-transfer torques due to huge thermal gradients in heat-assisted magnetic recording,” IEEE Trans. Magn., vol. 54, no. 12, pp.1–11, 2018. DOI: 10.1109/TMAG.2018.2863225.
  • Y. Mao and Y. Zhang, “Thermal conductivity, shear viscosity and specific heat of rigid water models,” Chem. Phys, Lett., vol. 542, pp. 37–41, 2012. DOI: 10.1016/j.cplett.2012.05.044.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.