683
Views
34
CrossRef citations to date
0
Altmetric
Articles

Investigation of Nucleate Pool Boiling of Saturated Pure Liquids and Ethanol-Water Mixtures on Smooth and Laser-Textured Surfaces

, ORCID Icon, &
Pages 29-42 | Received 19 Aug 2019, Accepted 01 Nov 2019, Published online: 06 Nov 2019

References

  • J. Kim, “Review of nucleate pool boiling bubble heat transfer mechanisms,” Int. J. Multiphase Flow, vol. 35, pp. 1067–1076, 2009. DOI: 10.1016/j.ijmultiphaseflow.2009.07.008.
  • S. J. D. Van Stralen, “The mechanism of nucleate boiling in pure liquids and in binary mixtures—part I,” Int. J. Heat Mass Transfer, vol. 9, pp. 995–1020, 1966. DOI: 10.1016/0017-9310(66)90025-1.
  • S. G. Kandlikar, “Boiling heat transfer with binary mixtures: part I—A theoretical model for pool boiling,” J. Heat Transfer, vol. 120, pp. 380–387, 1998. DOI: 10.1115/1.2824260.
  • A. Surtaev, V. Serdyukov, J. Zhou, A. Pavlenko, and V. Tumanov, “An experimental study of vapor bubbles dynamics at water and ethanol pool boiling at low and high heat fluxes,” Int. J. Heat Mass Transfer, vol. 126, pp. 297–311, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.06.001.
  • R. Reddy and J. Lienhard, “The peak boiling heat flux in saturated ethanol–water mixtures,” J. Heat Transfer, vol. 111, pp. 480–486, 1989. DOI: 10.1115/1.3250702.
  • S. Sinha-Ray, et al., “Swing-like pool boiling on nano-textured surfaces for microgravity applications related to cooling of high-power microelectronics,” Npj Microgravity, vol. 3, pp. 9, 2017. DOI: 10.1038/s41526-017-0014-z.
  • C. Colin, et al. “Nucleate pool boiling in microgravity: recent progress and future prospects,” C.R. Mec., vol. 345, pp. 21–34, 2017. DOI: 10.1016/j.crme.2016.10.004.
  • Y. L. Tzan and Y. M. Yang, “Pool boiling of binary mixtures,” Chem. Eng. Commun., vol. 66, pp. 71–82, 1988. DOI: 10.1080/00986448808940261.
  • L. Sargentini, M. Bucci, G. Su, J. Buongiorno, and T. McKrell, “Experimental and analytical study of exponential power excursion in plate-type fuel,” 2014 Am. Nucl. Soc. Embedded Topical Meeting Adv. Therm. Hydraulics (ATH 14), June 15–19, 2014.
  • W. Gao, J. Qi, X. Yang, J. Zhang, and D. Wu, “Experimental investigation on bubble departure diameter in pool boiling under sub-atmospheric pressure,” Int. J. Heat Mass Transfer, vol. 134, pp. 933–947, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.01.024.
  • A. Guion, S. Afkhami, S. Zaleski, and J. Buongiorno, “Simulations of microlayer formation in nucleate boiling,” Int. J. Heat Mass Transfer, vol. 127, pp. 1271–1284, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.06.041.
  • I. Golobic, J. Petkovsek, and D. B. R. Kenning, “Bubble growth and horizontal coalescence in saturated pool boiling on a titanium foil, investigated by high-speed IR thermography,” Int. J. Heat Mass Transfer, vol. 55, pp. 1385–1402, 2012. DOI: 10.1016/j.ijheatmasstransfer.2011.08.021.
  • A. Sitar and I. Golobic, “Heat transfer enhancement of self-rewetting aqueous n-butanol solutions boiling in microchannels,” Int. J. Heat Mass Transfer, vol. 81, pp. 198–206, 2015. DOI: 10.1016/j.ijheatmasstransfer.2014.10.034.
  • J. R. Thome, “Enhanced boiling of mixtures,” Chem. Eng. Sci., vol. 42, pp. 1909–1917, 1987. DOI: 10.1016/0009-2509(87)80137-9.
  • Y. Fujita and M. Tsutsui, “Heat transfer in nucleate pool boiling of binary mixtures,” Int. J. Heat Mass Transfer, vol. 37, pp. 291–302, 1994. DOI: 10.1016/0017-9310(94)90030-2.
  • M. Zupančič, J. Voglar, P. Gregorčič, I. Golobič, and P. Zakšek, “Saturated nucleate pool boiling of ethanol-water binary mixtures on smooth and enhanced laser processed metal surfaces,” ASME 2018 16th Int. Conf. Nanochannels Microchannels Minichannels, June 10–13, 2018.
  • S. A. Alavi Fazel, A. A. Safekordi, and M. Jamialahmadi, “Pool boiling heat transfer in water/amines solutions,” IJE Trans. Basics, vol. 21, pp. 113–131, 2008.
  • S. A. Alavi Fazel and M. Jamialahmadi, “Semi-empirical modeling of pool boiling heat transfer in binary mixtures,” Int. J. Heat Fluid Flow, vol. 44, pp. 468–477, 2013. DOI: 10.1016/j.ijheatfluidflow.2013.08.002.
  • P. Gupta, M. Hayat, and R. Srivastava, “A review on nucleate pool boiling heat transfer of binary mixtures,” Asian J. Water Environ. Pollut., vol. 16, pp. 27–34, 2019. DOI: 10.3233/AJW190016.
  • C. Cai, H. Liu, X. Xi, M. Jia, and H. Yin, “Bubble growth model in uniformly superheated binary liquid mixture,” Int. J. Heat Mass Transfer, vol. 127, pp. 629–638, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.07.084.
  • K. Stephan and M. Körner, “Berechnung des Wärmeübergangs verdampfender binärer Flüssigkeitsgemische,” Chem. Ing. Tech., vol. 41, pp. 409–417, 1969. DOI: 10.1002/cite.330410702.
  • W. F. Calus and D. J. Leonidopoulos, “Pool boiling—binary liquid mixtures,” Int. J. Heat Mass Transfer, vol. 17, pp. 249–256, 1974. DOI: 10.1016/0017-9310(74)90086-6.
  • H. Jungnickel, P. Wassilew, and W. E. Kraus, “Investigations on the heat transfer of boiling binary refrigerant mixtures,” Int. J. Refrig., vol. 3, pp. 129–133, 1980. DOI: 10.1016/0140-7007(80)90092-4.
  • J. R. Thome, “Prediction of binary mixture boiling heat transfer coefficients using only phase equilibrium data,” Int. J. Heat Mass Transfer, vol. 26, pp. 965–974, 1983. DOI: 10.1016/S0017-9310(83)80121-5.
  • Y. Fujita and M. Tsutsui, “Heat transfer in nucleate boiling of binary mixtures: development of a heat transfer correlation,” JSME Int. J. Ser. B Fluids Therm. Eng., vol. 40, pp. 134–141, 1997. DOI: 10.1299/jsmeb.40.134.
  • Y. Fujita and M. Tsutsui, “Experimental investigation in pool boiling heat transfer of ternary mixture and heat transfer correlation,” Exp. Therm. Fluid Sci., vol. 26, pp. 237–244, 2002. DOI: 10.1016/S0894-1777(02)00132-2.
  • E. Meléndez and R. Reyes, “The pool boiling heat transfer enhancement from experiments with binary mixtures and porous heating covers,” Exp. Therm. Fluid Sci., vol. 30, pp. 185–192, 2006. DOI: 10.1016/j.expthermflusci.2005.05.005.
  • K. Armijo and V. Carey, “Prediction of binary mixture boiling heat transfer in systems with strong Marangoni effects,” Front. Heat Mass Transfer, vol. 1, pp. 1–6, 2010.
  • T. Inoue, Y. Teruya, and M. Monde, “Enhancement of pool boiling heat transfer in water and ethanol/water mixtures with surface-active agent,” Int. J. Heat Mass Transfer, vol. 47, pp. 5555–5563, 2004. DOI: 10.1016/j.ijheatmasstransfer.2004.05.037.
  • A. K. Dewangan, A. Kumar, and R. Kumar, “Pool boiling of iso-butane and quasi azeotropic refrigerant mixture on coated surfaces,” Exp. Therm. Fluid Sci., vol. 85, pp. 176–188, 2017. DOI: 10.1016/j.expthermflusci.2017.02.028.
  • Y. Im, C. Dietz, S. S. Lee, and Y. Joshi, “Flower-like CuO nanostructures for enhanced boiling,” Nanoscale Microscale Thermophys. Eng., vol. 16, pp. 145–153, 2012. DOI: 10.1080/15567265.2012.678564.
  • S. U. Ilyas, R. Pendyala, and N. Marneni, “Stability and agglomeration of alumina nanoparticles in ethanol-water mixtures,” Procedia Eng., vol. 148, pp. 290–297, 2016. DOI: 10.1016/j.proeng.2016.06.616.
  • W.-T. Ji, P.-F. Zhao, C.-Y. Zhao, J. Ding, and W.-Q. Tao, “Pool boiling heat transfer of water and nanofluid outside the surface with higher roughness and different wettability,” Nanoscale Microscale Thermophys. Eng., vol. 22, pp. 296–323, 2018. DOI: 10.1080/15567265.2018.1497110.
  • C. S. Sujith Kumar, Y. W. Chang, and P.-H. Chen, “Effect of heterogeneous wettable structures on pool boiling performance of cylindrical copper surfaces,” Appl. Therm. Eng., vol. 127, pp. 1184–1193, 2017. DOI: 10.1016/j.applthermaleng.2017.08.069.
  • M. Zupančič, M. Može, P. Gregorčič, and I. Golobič, “Nanosecond laser texturing of uniformly and non-uniformly wettable micro structured metal surfaces for enhanced boiling heat transfer,” Appl. Surf. Sci., vol. 399, pp. 480–490, 2017. DOI: 10.1016/j.apsusc.2016.12.120.
  • B. Shen, et al. “Enhanced pool boiling of ethanol on wettability-patterned surfaces,” Appl. Therm. Eng., vol. 149, pp. 325–331, 2019. DOI: 10.1016/j.applthermaleng.2018.12.049.
  • R. P. Sahu, S. Sinha-Ray, S. Sinha-Ray, and A. L. Yarin, “Pool boiling on nano-textured surfaces comprised of electrically-assisted supersonically solution-blown, copper-plated nanofibers: experiments and theory,” Int. J. Heat Mass Transfer, vol. 87, pp. 521–535, 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.04.009.
  • A. Sankaran, W. Zhang, and A. L. Yarin, “Pool boiling in deep and shallow vessels and the effect of surface nano-texture and self-rewetting,” Int. J. Heat Mass Transfer, vol. 127, pp. 857–866, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.08.046.
  • M. M. Rahman, J. Pollack, and M. McCarthy, “Increasing boiling heat transfer using low conductivity materials,” Sci. Rep., vol. 5, pp. 13145, 2015. DOI: 10.1038/srep13145.
  • J. Voglar, P. Gregorčič, M. Zupančič, and I. Golobič, “Boiling performance on surfaces with capillary-length-spaced one- and two-dimensional laser-textured patterns,” Int. J. Heat Mass Transfer, vol. 127, pp. 1188–1196, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.07.056.
  • P. Gregorčič, M. Zupančič, and I. Golobič, “Scalable surface microstructuring by a fiber laser for controlled nucleate boiling performance of high- and low-surface-tension fluids,” Sci. Rep., vol. 8, pp. 7461, 2018. DOI: 10.1038/s41598-018-25843-5.
  • Y. Y. Hsu, “On the size range of active nucleation cavities on a heating surface,” J. Heat Transfer, vol. 84, pp. 207–213, 1962. DOI: 10.1115/1.3684339.
  • E. W. Lemmon, I. H. Bell, M. L. Huber, and M. O. McLinden, “NIST standard reference database 23: reference fluid thermodynamic and transport properties-REFPROP, Version 10.0, Nat. Inst. Stand. Technol., Stand. Reference Data Program, Gaithersburg, 2018.
  • I. Golobič and M. Zupančič, “Wall-temperature distributions of nucleate pool boiling surfaces vs. boiling curves: A new approach,” Int. J. Heat Mass Transfer, vol. 99, pp. 541–547, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.04.033.
  • L. Zhang, J. H. Seong, and M. Bucci, “Percolative scale-free behavior in the boiling crisis,” Phys. Rev. Lett., vol. 122, pp. 134501, 2019. DOI: 10.1103/PhysRevLett.122.134501.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.