229
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Molecular Dynamics Study of Interactions between the Water/ice Interface and a Nanoparticle in the Vicinity of a Solid Surface

, &
Pages 53-65 | Received 12 Dec 2019, Accepted 03 May 2020, Published online: 19 May 2020

References

  • J. An, H. Lee, H. Kim, and H. Jeong, “Effect of process parameters on particle removal efficiency in poly(vinyl alcohol) brush scrubber cleaning,” Jpn. J. Appl. Phys., vol. 51, no. 2 PART 1, 2012. DOI:10.1103/PhysRevB.31.5262
  • K. Fujiwara and M. Shibahara, “A molecular dynamics study on wetting phenomena at a solid surface with a nanometer-scale slit pore,” Nano. Micro. Therm. Eng., vol. 17, no. 1, pp. 1–9, 2008. DOI: 10.1080/15567265.2012.745636.
  • K. Miya, N. Fujiwara, M. Kato, and A. Izumi, “A new cleaning technology using the effect of freezing water on wafer surface,” Electrochem. Soc., vol. 41, no. 5, pp. 215–220, 2011. DOI: 10.1149/1.3630846.
  • J. Jelassi et al., “Structural studies of water in hydrophilic and hydrophobic mesoporous silicas: an x-ray and neutron diffraction study at 297 K,” J. Chem. Phys., vol. 134, no. 6, pp. 064509, 2011. DOI: 10.1063/1.3530584.
  • K. Morishige and K. Nobuoka, “X-ray diffraction studies of freezing and melting of water confined in a mesoporous adsorbent (MCM-41),” J. Chem. Phys., vol. 107, no. 17, pp. 6965–6969, 1997. DOI: 10.1063/1.474936.
  • D. Akporiaye, E. W. Hansen, R. Schmidt, and M. Stoecker, “Water-saturated mesoporous MCM-41 systems characterized by 1H NMR,” J. Phys. Chem., vol. 98, no. 7, pp. 1926–1928, 1994. DOI: 10.1021/j100058a034.
  • E. W. Hansen, R. Schmidt, M. Stöcker, and D. Akporiaye, “Water-saturated mesoporous MCM-41 systems characterized by 1H NMR spin-lattice relaxation times,” J. Phys. Chem., vol. 99, no. 12, pp. 4148–4154, 1995. DOI: 10.1021/j100012a040.
  • E. W. Hansen, M. Stöcker, and R. Schmidt, “Low-temperature phase transition of water confined in mesopores probed by NMR. Influence on pore size distribution,” J. Phys. Chem., vol. 100, no. 6, pp. 2195–2200, 1996. DOI: 10.1021/jp951772y.
  • D. R. Uhlmann, B. Chalmers, and K. A. Jackson, “Interaction between particles and a solid-liquid interface,” J. Appl. Phys., vol. 35, no. 10, pp. 2986–2993, 1964. DOI: 10.1063/1.1713142.
  • A. W. Neumann, J. Szekely, and E. J. Rabenda Jr, “Thermodynamic aspects of particle engulfment by solidifying melts,” J. Colloid Interface Sci., vol. 43, no. 3, pp. 727–732, 1973. DOI: 10.1063/1.323217.
  • K. Tai, Y. Liu, and S. J. Dillon, “In situ cryogenic transmission electron microscopy for characterizing the evolution of solidifying water ice in colloidal systems,” Microsc. Microanal., vol. 20, no. 2, pp. 330–337, 2014. DOI: 10.1017/S1431927613014128.
  • J. A. Hayward and A. D. J. Haymet, “Ice/water interface: molecular dynamics simulations of the basal, prism,, and interfaces of ice Ih,” J. Chem. Phys., vol. 114, no. 8, pp. 3713–3726, 2001. DOI: 10.1063/1.1333680.
  • H. Nada and Y. Furukawa, “Anisotropy in growth kinetics at interfaces between proton-disordered hexagonal ice and water: A molecular dynamics study using the six-site model of H2O,” J. Cryst. Growth, vol. 283, no. 1–2, pp. 242–256, 2005. DOI: 10.1016/j.jcrysgro.2005.05.057.
  • N. Giovambattista, P. J. Rossky, and P. G. Debenedetti, “Effect of temperature on the structure and phase behavior of water confined by hydrophobic, hydrophilic, and heterogeneous surfaces,” J. Phys. Chem. B., vol. 113, pp. 13723–13734, 2009. DOI:10.1021/jp9018266.
  • Y. Naruke, S. Kosaka, T. Nakano, G. Kikugawa, and T. Ohara, “A molecular dynamics study on mass transport characteristics in the vicinity of SiO2-water/IPA interfaces,” Int. J. Heat Mass Transf., vol. 84, pp. 584–591, 2015. DOI:10.1016/j.ijheatmasstransfer.2015.01.051.
  • S. M. Melnikov, A. Höltzel, A. Seidel-Morgenstern, and U. Tallarek, “Adsorption of water-acetonitrile mixtures to model silica surfaces,” J. Phys. Chem. C, vol. 117, no. 13, pp. 6620–6631, 2013. DOI: 10.1021/jp312501b.
  • A. Okuda, T. Nagasawa, S. Okawa, and A. Saito, “Research on solidification of water on surface,” in 14th Int. Conf. Prop. Water Steam Kyoto Water, pp. 690–695, 2004.
  • X. X. Zhang, M. Chen, and M. Fu, “Icing of water on polyethylene surfaces,” Appl. Surf. Sci., vol. 313, pp. 771–776, 2014. DOI:10.1016/j.apsusc.2014.06.070.
  • K. Fujiwara, S. Sasaki, and M. Shibahara, “A molecular dynamics study on effects of solidification phenomena on water molecules in the vicinity of a solid surface, ” Therm. Sci. Eng. (In Japanese), vol. 25, no. 4, pp. 9–16, 2016. DOI: 10.11368/tse.25.9.
  • T. Schneider and E. Stoll, “Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions,” Phys. Rev. B, vol. 17, no. 3, pp. 1302–1322, 1978. DOI: 10.1103/PhysRevB.17.1302.
  • J. L. F. Abascal and C. Vega, “A general purpose model for the condensed phases of water: TIP4P/2005,” J. Chem. Phys., vol. 123, no. 23, pp. 234505, 2005. DOI: 10.1063/1.2121687.
  • F. H. Stillinger and T. A. Weber, “Computer simulation of local order in condensed phases of silicon,” Phys. Rev. B, vol. 31, no. 8, pp. 5262–5271, 1985. DOI: 10.1016/j.colsurfa.2004.04.005.
  • M. F. Harrach and B. Drossel, “Structure and dynamics of TIP3P, TIP4P, and TIP5P water near smooth and atomistic walls of different hydroaffinity,” J. Chem. Phys., vol. 140, no. 17, pp. 1–14, 2014. DOI: 10.1063/1.4872239.
  • S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics,” J. Comput. Phys., vol. 117, no. 1, pp. 1–19, 1995. DOI: 10.1006/jcph.1995.1039.
  • K. Koga, H. Tanaka, and X. C. Zeng, “First-order transition in confined water between high-density liquid and low-density amorphous phases,” Nature, vol. 408, no. 6812, pp. 564–567, 2000. DOI: 10.1006/jcph.1995.1039.
  • R. García Fernández, J. L. F. Abascal, and C. Vega, “The melting point of ice Ih for common water models calculated from direct coexistence of the solid-liquid interface,” J. Chem. Phys., vol. 124, no. 14, pp. 1–11, 2006. DOI: 10.1063/1.2183308.
  • S. Engemann et al., “Interfacial melting of ice in contact with SiO2,” Phys. Rev. Lett., vol. 92, no. 20, pp. 205701, 2004. DOI: 10.1103/PhysRevLett.92.205701.
  • R. A. Nistor, T. E. Markland, and B. J. Berne, “Interface-limited growth of heterogeneously nucleated ice in supercooled water,” J. Phys. Chem. B, vol. 118, no. 3, pp. 752–760, 2014. DOI: 10.1021/jp408832b.
  • A. A. Shibkov et al., “Morphology diagram of nonequilibrium patterns of ice crystals growing in supercooled water,” Phys. A Stat. Mech. Its Appl, vol. 319, pp. 65–79, 2003. DOI: 10.1016/S0378-4371(02)01517-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.