552
Views
18
CrossRef citations to date
0
Altmetric
Articles

Near-field electromagnetic heat transfer through nonreciprocal hyperbolic graphene plasmons

, , &
Pages 168-183 | Received 11 Aug 2020, Accepted 29 Oct 2020, Published online: 08 Nov 2020

References

  • Z. M. Zhang. Nano/Micr Oscale Heat Transfer. Springer Nature Switzerland AG, 2020.
  • D. Liu, Q. Li, and Y. M. Xuan, “Reticulated porous volumetric solar receiver designs guided by normal absorptance and hemispherical volumetric emittance investigations,” Int. J. Heat Mass Transf., vol. 114, pp. 1067–1071, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.07.004.
  • D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B., vol. 4, pp. 3303–3314, 1971. DOI: 10.1103/PhysRevB.4.3303.
  • X. L. Liu, L. P. Wang, and Z. M. Zhang, “Near-field thermal radiation: recent progress and outlook,” Nanosc. Microsc. Therm., vol. 19, pp. 98–126, 2015. DOI: 10.1080/15567265.2015.1027836.
  • L. Tang, J. DeSutter, and M. Francoeur, “Near-field radiative heat transfer between dissimilar materials mediated by coupled surface phonon- and plasmon-polaritons,” ACS Photonics., vol. 7, pp. 1304–1311, 2020. DOI: 10.1021/acsphotonics.0c00404.
  • S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett., vol. 9, pp. 2909–2913, 2009. DOI: 10.1021/nl901208v.
  • P. J. Van. Zwol, K. Joulain, P. Ben-Abdallah, and J. Chevrier, “Phonon-Polaritons enhance near field thermal transfer across the phase transition of VO2,” Phys. Rev. B., vol. 84, pp. 161413(R), 2011. DOI: 10.1103/PhysRevB.84.161413.
  • M. Lim, S. S. Lee, and B. J. Lee, “Near-field thermal radiation between graphene-covered doped silicon plates,” Opt. Express., vol. 21, pp. 22173, 2013. DOI: 10.1364/OE.21.022173.
  • X. Liu, R. Z. Zhang, and Z. M. Zhang, “Near-perfect photon tunneling by hybridizing graphene plasmons and hyperbolic modes,” ACS Photonics., vol. 1, pp. 785–789, 2014. DOI: 10.1021/ph5001633.
  • X. Y. Ying, P. Sabbaghi, and N. Sluder, “Super-planckian radiative heat transfer between macroscale surfaces with vacuum gaps down to 190 nm directly created by su-8 posts and characterized by capacitance method,” ACS Photonics., vol. 7, pp. 190–196, 2020. DOI: 10.1021/acsphotonics.9b01360.
  • O. Ilic, et al., “Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B., vol. 85, pp. 155422, 2012. DOI: 10.1103/PhysRevB.85.155422.
  • J. Dai, S. A. Dyakov, and M. Yan, “Enhanced near-field radiative heat transfer between corrugated metal plates: role of spoof surface plasmon polaritons,” Phys. Rev. B., vol. 92, pp. 035419, 2015. DOI: 10.1103/PhysRevB.92.035419.
  • S.-A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Noncontact heat transfer between two metamaterials,” Phys. Rev. Lett, vol. 109, pp. 104301, 2012. DOI: 10.1103/PhysRevLett.109.104301.
  • X. H. Wu, C. J. Fu, and Z. M. Zhang, “Near-field radiative heat transfer between two α-MoO3 biaxial crystals,” J. Heat Trans-T ASME, vol. 142, pp. 072802, 2020. DOI: 10.1115/1.4046968.
  • S.-A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett, vol. 109, pp. 104301, 2012. DOI: 10.1103/PhysRevLett.109.104301.
  • Y. Yang and L. P. Wang, “Spectrally enhancing near-field radiative transfer between metallic gratings by exciting magnetic polaritons in nanometric vacuum gaps,” Phys. Rev. Lett, vol. 117, pp. 044301, 2016. DOI: 10.1103/PhysRevLett.117.044301.
  • Y. Zhang, H. L. Yi, and H. P. Tan, “Near-field radiative heat transfer between black phosphorus sheets via anisotropic surface plasmon polaritons,” ACS Photonics., vol. 5, pp. 3739–3747, 2018. DOI: 10.1021/acsphotonics.8b00776.
  • H. H. Wu, Y. Huang, L. J. Cui, and K. Y. Zhu, “Active magneto-optical control of near-field radiative heat transfer between graphene sheets,” Phys. Rev. Appl., vol. 11, pp. 054020, 2019. DOI: 10.1103/PhysRevApplied.11.054020.
  • L. X. Ge, et al., “Magnetically tunable multiband near-field radiative heat transfer between two graphene sheets,” Phys. Rev. B., vol. 100, pp. 035414, 2019.
  • J. L. Song, et al., “Magnetically tunable near-field radiative heat transfer in hyperbolic metamaterials,” Phys. Rev. Appl., vol. 13, pp. 024054, 2020. DOI: 10.1103/PhysRevApplied.13.024054.
  • C. R. Otey, W. T. Lau, and S. H. Fan, “Thermal rectification through vacuum,” Phys. Rev. Lett., vol. 104, pp. 154301, 2010. DOI: 10.1103/PhysRevLett.104.154301.
  • P. Ben-Abdallah and S.-A. Biehs, “Near-field thermal transistor,” Phys. Rev. Lett, vol. 112, pp. 044301, 2014. DOI: 10.1103/PhysRevLett.112.044301.
  • Y. Zhang, C. L. Zhou, H. L. Yi, and H. P. Tan, “Radiative thermal diode mediated by nonreciprocal graphene plasmon waveguides,” Phys. Rev. Appl., vol. 13, pp. 034021, 2020. DOI: 10.1103/PhysRevApplied.13.034021.
  • J. G. Huang, Q. Li, Z. H. Zheng, and Y. M. Xuan, “Thermal rectification based on thermochromic materials,” Int. J. Heat. Mass. Transf., vol. 67, pp. 575–580, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.08.057.
  • W. Gu, G. H. Tang, and W. Q. Tao, “Thermal switch and thermal rectification enabled by near-field radiative heat transfer between three slabs,” Int. J. Heat. Mass. Transf., vol. 82, pp. 429–434, 2015. DOI: 10.1016/j.ijheatmasstransfer.2014.11.058.
  • O. Ilic, et al., “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express., vol. 20, pp. A366–A384, 2012. DOI: 10.1364/OE.20.00A366.
  • D. D. Feng, E. J. Tervo, S. K. Yee, and Z. M. Zhang, “Effect of evanescent waves on the dark current of thermophotovoltaic cells,” Nanosc. Microsc. Therm., vol. 24, pp. 1–19, 2020. DOI: 10.1080/15567265.2019.1683106.
  • L. X. Zhu, et al., “Near-field photonic cooling through control of the chemical potential of photons,” Nature., vol. 556, pp. 239–244, 2019. DOI: 10.1038/s41586-019-0918-8.
  • K. F. Chen, P. Santhanam, and S. H. Fan, “Near-field enhanced negative luminescent refrigeration,” Phys. Rev. Appl., vol. 6, pp. 024014, 2016. DOI: 10.1103/PhysRevApplied.6.024014.
  • X. L. Liu and Z. M. Zhang, “High-performance electroluminescent refrigeration enabled by photon tunneling,” Nano. Energy., vol. 26, pp. 353–359, 2016. DOI: 10.1016/j.nanoen.2016.05.049.
  • J. Y. Chang, Y. Yang, and L. P. Wang, “Tungsten nanowire based hyperbolic metamaterial emitters for near-field thermophotovoltaic applications,” Int. J. Heat Mass Transf., vol. 87, pp. 237–247, 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.03.087.
  • C. L. Zhou, Y. Zhang, L. Qu, and H. L. Yi, “Near-field negative electroluminescent cooling via nanoparticle doping,” J. Quant. Spectrosc. Ra., vol. 245, pp. 106889, 2020. DOI: 10.1016/j.jqsrt.2020.106889.
  • V. Kubytskyi, S.-A. Biehs, and P. Ben-Abdallah, “Radiative bistability and thermal memory,” Phys. Rev. Lett, vol. 113, pp. 074301, 2014. DOI: 10.1103/PhysRevLett.113.074301.
  • T. A. Morgado and M. G. Silveirinha, “Drift-induced unidirectional graphene plasmons,” ACS Photonics., vol. 5, pp. 4253–4258, 2018. DOI: 10.1021/acsphotonics.8b00987.
  • D. Correas-Serrano and J. S. Gomez-Diaz, “Nonreciprocal and collimated surface plasmons in drift-biased graphene metasurfaces,” Phys. Rev. B., vol. 100, pp. 081410, 2019. DOI: 10.1103/PhysRevB.100.081410.
  • Y. Zhang, C. L. Zhou, L. Qu, and H. L. Yi, “Active control of near-field radiative heat transfer through nonreciprocal graphene surface plasmons,” Appl. Phys. Lett., vol. 116, pp. 151101, 2020. DOI: 10.1063/1.5145224.
  • M. J. He, et al., “Graphene-mediated near field thermostat based on three-body photon tunneling,” Int. J. Heat. Mass. Transf., vol. 137, pp. 12–19, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.03.082.
  • Z. H. Zheng, X. L. Liu, A. Wang, and Y. M. Xuan, “Graphene-assisted near-field radiative thermal rectifier based on phase transition of vanadium dioxide (VO2),” Int. J. Heat. Mass. Transf., vol. 109, pp. 63–72, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.01.107.
  • X. L. Liu and Z. M. Zhang, “Giant enhancement of nanoscale thermal radiation based on hyperbolic graphene plasmons,” Appl. Phys. Lett., vol. 107, pp. 143114, 2015. DOI: 10.1063/1.4932958.
  • M. J. He, et al., “Near-field radiative heat transfer in multilayered graphene system considering equilibrium temperature distribution,” Opt. Express., vol. 27, pp. A953–968, 2019. DOI: 10.1364/OE.27.00A953.
  • F. V. Ramirez, S. Shen, and A. J. H. McGaughey, “Near-field radiative heat transfer in graphene plasmonic nanodisk dimers,” Phys. Rev. B., vol. 96, pp. 165427, 2017. DOI: 10.1103/PhysRevB.96.165427.
  • P. Ben-Abdallah, A. Belarouci, L. Frechette, and S.-A. Biehs, “Heat flux splitter for near–field thermal radiation,” Appl. Phys. Lett., vol. 107, pp. 143501, 2015. DOI: 10.1063/1.4928430.
  • R. Yu, A. Manjavacas, and F. J. Garcia de Abajo, “Ultrafast radiative heat transfer,” Nat.Commun, vol. 8, pp. s41467, 2017.
  • J. S. Gomez-Diaz, M. Tymchenko, and A. Alù, “Hyperbolic metasurfaces: surface plasmons, light-matter interactions, and physical implementation using graphene strips,” Opt. Mater. Express., vol. 10, pp. 15028, 2015.
  • D. Correas-Serrano, A. Alù, and J. S. Gomez-Diaz, “Plasmon canalization and tunneling over anisotropic metasurfaces,” Phys. Rev. B., vol. 96, pp. 1–9, 2017. DOI: 10.1103/PhysRevB.96.075436.
  • J. S. Gomez-Diaz and A. Alù, “Flatland optics with hyperbolic metasurfaces,” ACS Photonics., vol. 3, pp. 2211–2224, 2016. DOI: 10.1021/acsphotonics.6b00645.
  • X. L. Liu, J. D. Shen, and Y. M. Xuan, “Near-field thermal radiation of nanopatterned black phosphorene mediated by topological transitions of phosphorene plasmons,” Nanosc. Microsc. Therm., vol. 23, pp. 188–199, 2019. DOI: 10.1080/15567265.2019.1578310.
  • X. J. Yi, et al., “Near-field radiative heat transfer between hyperbolic metasurfaces based on black phosphorus,” Eur. Phys. J. B., vol. 92, pp. 100274, 2019. DOI: 10.1140/epjb/e2019-100274-y.
  • O. Luukkonen, et al. “Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches,” IEEE Trans. Antennas Propag., vol. 56, pp. 1624–1632, 2008. DOI: 10.1109/TAP.2008.923327.
  • V. E. Dorgan, A. Behnam, H. J. Conley, K. I. Bolotin, and E. Pop, “High-field electrical and thermal transport in suspended graphene,” Nano Lett., vol. 13, pp. 4581–4586, 2013. DOI: 10.1021/nl400197w.
  • V. E. Dorgan, M. H. Bae, and E. Pop, “Mobility and saturation velocity in graphene on SiO2,” Appl. Phys. Lett., vol. 97, pp. 082112, 2010. DOI: 10.1063/1.3483130.
  • H. Ramamoorthy, et al., “‘Freeing’ graphene from its substrate: observing intrinsic velocity saturation with rapid electrical pulsing,” Nano. Lett., vol. 16, pp. 399–403, 2016.
  • L. A. Falkovsky, “Optical properties of graphene,” J. Phys. Conf. Ser., vol. 129, pp. 012004, 2008.
  • L. A. Falkovsky and S. S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B., vol. 76, pp. 153410, 2007. DOI: 10.1103/PhysRevB.76.153410.
  • H. Yan, et al., “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol., vol. 7, pp. 330–334, 2012. DOI: 10.1038/nnano.2012.59.
  • M. J. He, H. Qi, Y. T. Ren, Y. J. Zhao, and M. Antezza, “Magnetoplasmonic manipulation of nanoscale thermal radiation using twisted graphene gratings,” Int. J. Heat. Mass. Transf., vol. 150, pp. 119305, 2020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.