368
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Through Plane Networked Graphene Oxide/Polyester Hybrid Thermal Interface Material for Heat Management Applications

&
Pages 188-197 | Received 11 Apr 2022, Accepted 13 Sep 2022, Published online: 20 Sep 2022

References

  • J. Khan, S. A. Momin, and M. Mariatti, “A review on advanced carbon-based thermal interface materials for electronic devices,” Carbon N. Y, vol. 168, pp. 65–112, 2020. DOI:10.1016/j.carbon.2020.06.012.
  • L. Yates, et al., “Simultaneous evaluation of heat capacity and in-plane thermal conductivity of nanocrystalline diamond thin films, nanoscale microscale thermophys,” Eng, vol. 25, pp. 166–178, 2021. DOI:10.1080/15567265.2021.2002484.
  • D. S. Saidina, M. Z. Abdullah, and M. Hussin, “Metal oxide nanofluids in electronic cooling: a review,” J. Mater. Sci. Mater. Electron, vol. 31, no. 6, pp. 4381–4398, 2020. DOI: 10.1007/s10854-020-03020-7.
  • M. A. Alim, M. Z. Abdullah, M. S. A. Aziz, and R. Kamarudin, “Die attachment, wire bonding, and encapsulation process in LED packaging: a review,” Sensors Actuators A Phys, vol. 329, pp. 112817, 2021. DOI:10.1016/j.sna.2021.112817.
  • C. Zhao, et al., “Hybrid battery thermal management system in electrical vehicles: a review,” Energies, vol. 13, no. 23, pp. 6257, 2020. DOI: 10.3390/en13236257.
  • L. Lv, W. Dai, A. Li, and C. Te Lin, “Graphene-based thermal interface materials: an application-oriented perspective on architecture design,” Polymers (Basel), vol. 10, no. 11, pp. 1201, 2018. DOI: 10.3390/polym10111201.
  • M. A. Alim, M. Z. Abdullah, M. S. A. Aziz, R. Kamarudin, and P. Gunnasegaran, “Recent advances on thermally conductive adhesive in electronic packaging: a review,” Polymers (Basel), vol. 13, no. 19, pp. 3337, 2021. DOI: 10.3390/polym13193337.
  • Y. J. Wan, et al., “Recent advances in polymer-based electronic packaging materials, Compos,” Commun, vol. 19, pp. 154–167, 2020. DOI:10.1016/j.coco.2020.03.011.
  • Y. Fu, et al., “Graphene related materials for thermal management,” 2D Mater., vol. 7, pp. 012001, 2019. DOI:10.1088/2053-1583/ab48d9.
  • Q. Li, et al., “Ultrahigh thermal conductivity of assembled aligned multilayer graphene/epoxy composite,” Chem. Mater, vol. 26, no. 15, pp. 4459–4465, 2014. DOI: 10.1021/cm501473t.
  • K. Kim and J. Kim, “Vertical filler alignment of boron nitride/epoxy composite for thermal conductivity enhancement via external magnetic field,” Int. J. Therm. Sci, vol. 100, pp. 29–36, 2016. DOI:10.1016/j.ijthermalsci.2015.09.013.
  • N. Burger, et al., “Alignments and network of graphite fillers to improve thermal conductivity of epoxy-based composites,” Int. J. Heat Mass Transf, vol. 89, pp. 505–513, 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.05.065.
  • H. Zhang, et al., “Recent advances in preparation, mechanisms, and applications of thermally conductive polymer composites: a review,” J. Compos. Sci, vol. 4, no. 4, pp. 180, 2020. DOI: 10.3390/jcs4040180.
  • H. Yu, et al., “Thermally conductive, self-healing, and elastic Polyimide@Vertically aligned carbon nanotubes composite as smart thermal interface material,” Carbon N. Y, vol. 179, pp. 348–357, 2021. DOI:10.1016/j.carbon.2021.04.055.
  • K. M. F. Shahil, V. Goyal, and A. A. Balandin, “Thermal properties of graphene: applications in thermal interface materials,” ECS Trans., vol. 35, no. 3, pp. 193–199, 2011. DOI: 10.1149/1.3569911.
  • J. Khan and M. Mariatti, “The influence of substrate functionalization for enhancing the interfacial bonding between graphene oxide and nonwoven polyester,” Fibers Polym, vol. 22, no. 11, pp. 3192–3202, 2021. DOI: 10.1007/s12221-021-1386-y.
  • J. Khan and M. Jaafar, “Reduction efficiencies of natural substances for reduced graphene oxide synthesis,” J. Mater. Sci, vol. 56, no. 33, pp. 18477–18492, 2021. DOI: 10.1007/s10853-021-06492-y.
  • V. Agarwal and P. B. Zetterlund, “Strategies for reduction of graphene oxide – a comprehensive review,” Chem. Eng. J, vol. 405, pp. 127018, 2021. DOI:10.1016/j.cej.2020.127018.
  • S. Majumder, T. Mondal, and M. J. Deen, “Wearable sensors for remote health monitoring,” Sensors (Switzerland), vol. 17, no. 12, pp. 130, 2017. DOI: 10.3390/s17010130.
  • J. Molina, “Graphene-based fabrics and their applications: a review,” RSC Adv, vol. 6, no. 72, pp. 68261–68291, 2016. DOI: 10.1039/c6ra12365a.
  • R. Jadwani, “Reducing textile & apparel waste - AATCC,” AATC Newsl, 2019, Available: https://www.aatcc.org/2019-reducing-waste/. Accessed March 13, 2021).
  • C. Palacios-Mateo, Y. van der Meer, and G. Seide, “Analysis of the polyester clothing value chain to identify key intervention points for sustainability,” Environ. Sci. Eur, vol. 331. 33, no. 2021, pp. 1–25, 2021. DOI: 10.1186/S12302-020-00447-X.
  • G. Braun, C. Som, M. Schmutz, and R. Hischier, “Environmental consequences of closing the textile loop—life cycle assessment of a circular polyester jacket.” Appl. Sci, vol. 11, no. 2021, pp. 2964. 11, 2021. DOI: 10.3390/APP11072964.
  • S. Pei and H. M. Cheng, “The reduction of graphene oxide,” Carbon N. Y, vol. 50, no. 9, pp. 3210–3228, 2012. DOI: 10.1016/j.carbon.2011.11.010.
  • S. Abraham, et al., “Mesoporous silica particle embedded functional graphene oxide as an efficient platform for urea biosensing,” Anal. Methods, vol. 6, no. 17, pp. 6711–6720, 2014. DOI: 10.1039/C4AY01303D.
  • S. K. Sharma, et al., “Synthesis and characterization of Graphene Oxide (GO) and Reduced Graphene Oxide (rGO) for gas sensing application, macromol,” Symp, vol. 376, no. 1, pp. 1700006, 2017. DOI: 10.1002/MASY.201700006.
  • C. Nethravathi and M. Rajamathi, “Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide,” Carbon N. Y, vol. 46, no. 14, pp. 1994–1998, 2008. DOI: 10.1016/j.carbon.2008.08.013.
  • E. Mohammed Khalaf, “Improvement of chemical and thermal properties of polyethylene terephthalate (PET) by using multi-walled carbon nanotubes (MWCNTs,” Int. J. Mater. Sci. Appl, vol. 5, pp. 297, 2016. DOI:10.11648/j.ijmsa.20160506.20.
  • N. Koto and B. Soegijono, “Effect of rice husk ash filler of resistance against of high-speed projectile impact on polyester-fiberglass double panel composites,” J. Phys. Conf. Ser, vol. 1191, pp. 012058, 2019. DOI:10.1088/1742-6596/1191/1/012058.
  • Z. Tang, et al., “Grafting of polyester onto graphene for electrically and thermally conductive composites,” Macromolecules, vol. 45, no. 8, pp. 3444–3451, 2012. DOI: 10.1021/ma300450t.
  • Y. Peng, et al., “Oxygen-containing functional groups regulating the carbon/electrolyte interfacial properties toward enhanced K+ storage,” Nano-Micro Lett, vol. 13, no. 1, pp. 1–15, 2021. DOI: 10.1007/S40820-021-00722-3/FIGURES/5.
  • Y. Quan, S. Yue, and B. Liao, “Impact of electron-phonon interaction on thermal transport: a review, nanoscale microscale thermophys,” Eng, vol. 25, pp. 73–90, 2021. DOI:10.1080/15567265.2021.1902441.
  • W. Dai, et al., “Te lin, metal-level thermally conductive yet soft graphene thermal interface materials,” ACS Nano, vol. 13, no. 10, pp. 11561–11571, 2019. DOI: 10.1021/acsnano.9b05163.
  • S. Chen, et al., “Scalable production of thick graphene film for next generation thermal management application,” Carbon N. Y, vol. 167, pp. 270–277, 2020. DOI:10.1016/j.carbon.2020.06.030.
  • Q. Song, et al., “Enhanced through-plane thermal conductivity and high electrical insulation of flexible composite films with aligned boron nitride for thermal interface material, Compos. Part A Appl,” Sci. Manuf, vol. 127, pp. 105654, 2019. DOI:10.1016/j.compositesa.2019.105654.
  • M. Zahid, M. T. Masood, A. Athanassiou, and I. S. Bayer, “Sustainable thermal interface materials from recycled cotton textiles and graphene nanoplatelets,” Appl. Phys. Lett, vol. 113, no. 4, pp. 044103, 2018. DOI: 10.1063/1.5044719.
  • N. Wang, et al., “Vertically aligned graphene-based thermal interface material with high thermal conductivity N3 - 10.1109/therminic.2018.8593303, 2018 24rd,” Int. Work. Therm. Investig. ICs Syst, vol. 2018, pp. 1–4, 2018. DOI:10.1109/THERMINIC.2018.8593303.
  • D. Wang, “Impact behavior and energy absorption of paper honeycomb sandwich panels,” Int. J. Impact Eng, vol. 36, no. 1, pp. 110–114, 2009. DOI: 10.1016/j.ijimpeng.2008.03.002.
  • A. D. de Oliveira and C. A. G. Beatrice, “Polymer nanocomposites with different types of nanofiller, nanocomposites,” Recent. Evol, 2018. DOI: 10.5772/INTECHOPEN.81329.
  • X. Li, et al., “Enhanced thermal conductivity of nanocomposites with MOF-derived encapsulated magnetic oriented carbon nanotube-grafted graphene polyhedra,” RSC Adv, vol. 10, no. 6, pp. 3357–3365, 2020. DOI: 10.1039/c9ra09199h.
  • D. Jeon, S. H. Kim, W. Choi, and C. Byon, “An experimental study on the thermal performance of cellulose-graphene-based thermal interface materials,” Int. J. Heat Mass Transf, vol. 132, pp. 944–951, 2019. DOI:10.1016/j.ijheatmasstransfer.2018.12.061.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.