150
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Thermal Insulation Performance of Monolithic Silica Aerogel with Gas Permeation Effect at Pressure Gradients and Large Temperature Differences

, , , , &
Pages 75-94 | Received 26 Sep 2022, Accepted 06 Mar 2023, Published online: 15 Mar 2023

References

  • A. J. Headley, et al., “Thermal conductivity measurements and modeling of ceramic fiber insulation materials,” Int. J. Heat Mass. Transfer, vol. 129, pp. 1287–1294, 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.10.060.
  • J. Sierra-Pérez, J. Boschmonart-Rives, A. C. Dias, and X. Gabarrell, “Environmental implications of the use of agglomerated cork as thermal insulation in buildings,” J. Cleaner Prod, vol. 126, pp. 97–107, 2016. DOI: 10.1016/j.jclepro.2016.02.146.
  • H. Moon, N. Miljkovic, and W. P. King, “High power density thermal energy storage using additively manufactured heat exchangers and phase change material,” Int. J. Heat Mass. Transfer, vol. 153, pp. 119591, 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.119591.
  • Á. Lakatos, A. Csík, and I. Csarnovics, “Experimental verification of thermal properties of the aerogel blanket, case stud,” Therm. Eng, vol. 25, pp. 100966, 2021. DOI: 10.1016/j.csite.2021.100966.
  • G. Koutsakis, G. Nellis, and J. Ghandhi, “Surface temperature of a multi-layer thermal barrier coated wall subject to an unsteady heat flux,” Int. J. Heat Mass. Transfer, vol. 155, pp. 119645, 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.119645.
  • M. Albano, et al., “Carbon/Carbon high thickness shell for advanced space vehicles,” Int. J. Heat Mass. Transfer, vol. 128, pp. 613–622, 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.05.106.
  • J. Sun, C. Liu, H. Du, and J. Tong, “Design of a bionic aviation material based on the microstructure of beetle’s elytra,” Int. J. Heat Mass. Transfer, vol. 114, pp. 62–72, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.06.043.
  • A. Hoseini, C. McCague, M. Andisheh-Tadbir, and M. Bahrami, “Aerogel blankets: from mathematical modeling to material characterization and experimental analysis,” Int. J. Heat Mass. Transfer, vol. 93, pp. 1124–1131, 2016. DOI: 10.1016/j.ijheatmasstransfer.2015.11.030.
  • S. S. Kistler, “Coherent expanded aerogels and jellies,” Nature, vol. 127, no. 3211, pp.741, 1931. DOI: 10.1038/127741a0.
  • G. Wei, Y. Zhang, C. Xu, X. Du, and Y. Yang, “A thermal conductivity study of double-pore distributed powdered silica aerogels,” Int. J. Heat Mass. Transfer, vol. 108, pp. 1297–1304, 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.12.062.
  • S. Kistler and A. Caldwell, “Thermal conductivity of silica aerogel,” Ind. Eng. Chem, vol. 26, no. 6, pp.658–662, 1934. DOI: 10.1021/ie50294a016.
  • J. Guo, G. Tang, J. Feng, Y. -G. Jiang, and J. -Z. Feng, “Non-silica fiber and enabled stratified fiber doping for high temperature aerogel insulation,” Int. J. Heat Mass. Transfer, vol. 160, pp. 120194, 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.120194.
  • F. He, Y. Wang, W. Zheng, J. -Y. Wu, and Y. -H. Huang, “Effective thermal conductivity model of aerogel thermal insulation composite,” Int. J. Therm. Sci, vol. 179, pp. 107654, 2022. DOI: 10.1016/j.ijthermalsci.2022.107654.
  • Á. Lakatos, “Thermal insulation capability of nanostructured insulations and their combination as hybrid insulation systems, case stud,” Therm. Eng, vol. 41, pp. 102630, 2022. DOI: 10.1016/j.csite.2022.102630.
  • H. Liu, X. Tian, Y. Wu, Z. Li, and Z. Li, “Investigation of high temperature thermal insulation performance of fiber-reinforced silica aerogel composites,” Int. J. Therm. Sci, vol. 183, pp. 107827, 2023. DOI: 10.1016/j.ijthermalsci.2022.107827.
  • I. Yang, D. Kim, and S. Lee, “Construction and preliminary testing of a guarded hot plate apparatus for thermal conductivity measurements at high temperatures,” Int. J. Heat Mass. Transfer, vol. 122, pp. 1343–1352, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.02.072.
  • H. Zhang, W. -Z. Fang, X. Wang, Y. -M. Li, and W. -Q. Tao, “Thermal conductivity of fiber and opacifier loaded silica aerogel composite,” Int. J. Heat Mass. Transfer, vol. 115, pp. 21–31, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.08.006.
  • G. Jia, Z. Li, P. Liu, and Q. Jing, “Preparation and characterization of aerogel/expanded perlite composite as building thermal insulation material,” J. Non-Cryst. Solids, vol. 482, pp. 192–202, 2018. DOI: 10.1016/j.jnoncrysol.2017.12.047.
  • G.T, 10295-2008, Thermal Insulation – Determination of Steady-State Thermal Resistance and Related Properties – Heat Flow Meter Apparatus, Beijing: China Standards Press, 2008.
  • Standard test method for steady-state heat flux measurements and thermal transmission properties by means of a guarded hot plate apparatus. J. ASTM IntAnnual Book of ASTM Standards, American Society for Testing and Materials, West Conshohocken, PA 4.06, 2005.
  • H. Ezbakhe, S. Boussaid, A. E. Bakkouri et al., ichange1 Method of testing thermal conductivity at steady state for insulating materials: Polyurethane and hollow bricks results of the measurements. World Renewable Energy Congress VI. Pergamon, 2000:1788-1791.
  • D. Zhu, R. A. Miller, B. A. Nagaraj, and R. W. Bruce, “Thermal conductivity of EB-PVD thermal barrier coatings evaluated by a steady-state laser heat flux technique, Surf,” Coat. Technol, vol. 138, no. 1, pp.1–8, 2001. DOI: 10.1016/S0257-8972(00)01145-2.
  • H. Liu, X. Xia, Q. Ai, X. Xie, and C. Sun, “Experimental investigations on temperature-dependent effective thermal conductivity of nanoporous silica aerogel composite,” Exp. Therm. Fluid Sci, vol. 84, pp. 67–77, 2017. DOI: 10.1016/j.expthermflusci.2017.01.021.
  • H. Q. Pang and Z. Y. Li, “Experimental investigations on the thermal insulation performance of SiC opacifier doped silica aerogel at large temperature difference,” Int. J. Therm. Sci, vol. 160, pp. 106681, 2021. DOI: 10.1016/j.ijthermalsci.2020.106681.
  • S. N. Zhang, et al., “Thermal insulation performance of SiC-Doped silica aerogels under large temperature and air pressure differences,” Gels, vol. 8, no. 5, pp.320, 2022. DOI: 10.3390/gels8050320.
  • J. E. Fesmire, “Aerogel insulation systems for space launch applications,” Cryogenics, vol. 46, no. 2–3, pp.111–117, 2006. DOI: 10.1016/j.cryogenics.2005.11.007.
  • M. Koebel, A. Rigacci, and P. Achard, “Aerogel-based thermal superinsulation: an overview,” J. Sol-Gel Sci. Technol, vol. 63, no. 3, pp.315–339, 2012. DOI: 10.1007/s10971-012-2792-9.
  • S. Spagnol, B. Lartigue, A. Trombe, and F. Despetis, “Experimental investigations on the thermal conductivity of silica aerogels by a guarded thin-film-heater method,” J Heat Transfer, vol. 131, no. 7, pp.074501, 2009. DOI: 10.1115/1.3089547.
  • S. Zeng, A. Hunt, and R. Greif, “Transport properties of gas in silica aerogel,” J. Non-Cryst. Solids, vol. 186, pp. 264–270, 1995. DOI: 10.1016/0022-3093(95)00052-6.
  • K. Swimm, G. Reichenauer, S. Vidi, and H. -P. Ebert, “Gas pressure dependence of the heat transport in porous solids with pores smaller than 10 μm,” Int J Thermophys, vol. 30, no. 4, pp.1329–1342, 2009. DOI: 10.1007/s10765-009-0617-z.
  • C. Bi, G. Tang, Z. Hu, H. Yang, and J. Li, “Coupling model for heat transfer between solid and gas phases in aerogel and experimental investigation,” Int. J. Heat Mass. Transfer, vol. 79, pp. 126–136, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.07.098.
  • H. Zhang, W. Fang, Z. Li, and W. Tao, “The influence of gaseous heat conduction to the effective thermal conductivity of nano-porous materials,” Int. Commun. Heat Mass Transfer, vol. 68, pp. 158–161, 2015. DOI: 10.1016/j.icheatmasstransfer.2015.08.027.
  • F. Civan, “Effective correlation of apparent gas permeability in tight porous media, Transp,” Porous Media, vol. 82, no. 2, pp.375–384, 2010. DOI: 10.1007/s11242-009-9432-z.
  • A. Beskok and G. E. Karniadakis, “Report: a model for flows in channels, pipes, and ducts at micro and nano scales, Microscale Thermophys,” Eng, vol. 3, no. 1, pp.43–77, 1999. DOI: 10.1080/108939599199864.
  • H. Liu, Z. -Y. Li, X. -P. Zhao, and W. -Q. Tao, “Investigation of the effect of the gas permeation induced by pressure gradient on transient heat transfer in silica aerogel,” Int. J. Heat Mass. Transfer, vol. 95, pp. 1026–1037, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.01.003.
  • S. Yang and W. Tao, Heat Transfer. Beijing, in: Higher Education Press, 2006.
  • S. Zeng, A. Hunt, and R. Greif, “Mean free path and apparent thermal conductivity of a gas in a porous medium,” J Heat Transfer, vol. 117, no. 3, pp.758–761, 1995. DOI: 10.1115/1.2822642.
  • R. Landauer, “The electrical resistance of binary metallic mixtures,” J. Appl. Phys., vol. 23, no. 7, pp.779–784, 1952. DOI: 10.1063/1.1702301.
  • M. &. C. S. $. A. I. &. Kaganer. “Ichange1 Thermal Insulation in Cryogenic Engineering.“ Jerusalem: Israel Program for Scientific Translations, 1969 (p. 227).
  • Z. -Y. Li, C. -Y. Zhu, and X. -P. Zhao, “A theoretical and numerical study on the gas-contributed thermal conductivity in aerogel,” Int. J. Heat Mass. Transfer, vol. 108, pp. 1982–1990, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.01.051.
  • L. B. Loeb, “Kinetic theory of gases,” J. Am. Chem. Soc., vol. 81, no. 5, pp.1267, 1959. DOI: 10.1021/ja01514a075.
  • G. Wei, Y. Liu, X. Zhang, F. Yu, and X. Du, “Thermal conductivities study on silica aerogel and its composite insulation materials,” Int. J. Heat Mass. Transfer, vol. 54, no. 11–12, pp.2355–2366, 2011. DOI: 10.1016/j.ijheatmasstransfer.2011.02.026.
  • A. Moroz, “Electron mean free path in a spherical shell geometry,” J. Phys. Chem. C, vol. 112, no. 29, pp.10641–10652, 2008. DOI: 10.1021/jp8010074.
  • P. Warrier, Y. Yuan, M. P. Beck, and A. S. Teja, “Heat transfer in nanoparticle suspensions: modeling the thermal conductivity of nanofluids,” AlChe J, vol. 56, no. 12, pp.3243–3256, 2010. DOI: 10.1002/aic.12228.
  • C. Bi and G. Tang, “Effective thermal conductivity of the solid backbone of aerogel,” Int. J. Heat Mass. Transfer, vol. 64, pp. 452–456, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.04.053.
  • T. Bauer, “A general analytical approach toward the thermal conductivity of porous media,” Int. J. Heat Mass. Transfer, vol. 36, no. 17, pp.4181–4191, 1993. DOI: 10.1016/0017-9310(93)90080-P.
  • T. Xie, Y. -L. He, and Z. -J. Hu, “Theoretical study on thermal conductivities of silica aerogel composite insulating material,” Int. J. Heat Mass. Transfer, vol. 58, no. 1–2, pp.540–552, 2013. DOI: 10.1016/j.ijheatmasstransfer.2012.11.016.
  • J. Gross, J. Fricke, R. Pekala, and L. Hrubesh, “Elastic nonlinearity of aerogels,” Phys. Rev. B, vol. 45, no. 22, pp.12774, 1992. DOI: 10.1103/PhysRevB.45.12774.
  • B. Nikolić and P. B. Allen, “Electron transport through a circular constriction,” Phys. Rev. B, vol. 60, no. 6, pp.3963, 1999. DOI: 10.1103/PhysRevB.60.3963.
  • G. Wexler, “The size effect and the non-local Boltzmann transport equation in orifice and disk geometry,” Proc. Phys. Soc, vol. 89, no. 4, pp.927, 1966. DOI: 10.1088/0370-1328/89/4/316.
  • M. Bahrami, M. M. Yovanovich, and J. R. Culham, “Effective thermal conductivity of rough spherical packed beds,” Int. J. Heat Mass. Transfer, vol. 49, no. 19–20, pp.3691–3701, 2006. DOI: 10.1016/j.ijheatmasstransfer.2006.02.021.
  • J. -J. Zhao, Y. -Y. Duan, X. -D. Wang, and B. -X. Wang, “A 3-D numerical heat transfer model for silica aerogels based on the porous secondary nanoparticle aggregate structure,” J. Non-Cryst. Solids, vol. 358, no. 10, pp.1287–1297, 2012. DOI: 10.1016/j.jnoncrysol.2012.02.035.
  • R. Coquard, et al., “Modelling of the conductive heat transfer through nano-structured porous silica materials,” J. Non-Cryst. Solids, vol. 363, pp. 103–115, 2013. DOI: 10.1016/j.jnoncrysol.2012.11.053.
  • J. -J. Zhao, et al., “Optical and radiative properties of infrared opacifier particles loaded in silica aerogels for high temperature thermal insulation,” Int. J. Therm. Sci, vol. 70, pp. 54–64, 2013. DOI: 10.1016/j.ijthermalsci.2013.03.020.
  • J. R. Howell, M. P. Menguc, and R. Siegel. Thermal Radiation Heat Transfer. New York: CRC press, 2015.
  • J. -J. Zhao, Y. -Y. Duan, X. -D. Wang, and B. -X. Wang, “Radiative properties and heat transfer characteristics of fiber-loaded silica aerogel composites for thermal insulation,” Int. J. Heat Mass. Transfer, vol. 55, no. 19–20, pp.5196–5204, 2012. DOI: 10.1016/j.ijheatmasstransfer.2012.05.022.
  • Y. Shi, J. Xiao, M. Pan, and R. Yuan, “A fractal permeability model for the gas diffusion layer of PEM fuel cells,” J Power Sources, vol. 160, no. 1, pp.277–283, 2006. DOI: 10.1016/j.jpowsour.2006.01.032.
  • D. W. Schaefer and K. D. Keefer, “Structure of random porous materials: silica aerogel,” Phys. Rev. Lett., vol. 56, no. 20, pp.2199, 1986. DOI: 10.1103/PhysRevLett.56.2199.
  • D. Chakerian and B. B. Mandelbrot, “The fractal geometry of nature, in, JSTOR,” Coll. Math. J, vol. 15, no. 2, pp.175, 1984. DOI: 10.2307/2686529.
  • R. B. Bird, “Transport phenomena, Appl,” Mech. Rev, vol. 55, no. 1, pp.R1–4, 2002. DOI: 10.1115/1.1424298.
  • B. Yu and J. Li, “Some fractal characters of porous media,” Fractals, vol. 9, no. 03, pp.365–372, 2001. DOI: 10.1142/S0218348X01000804.
  • B. Yu, “Analysis of flow in fractal porous media.” Appl. Mech. Rev., vol. 61, no. 5, 2008. DOI: 10.1115/1.2955849.
  • S. Whitaker, “Flow in porous media I: a theoretical derivation of Darcy’s law, Transp,” Porous Media, vol. 1, no. 1, pp.3–25, 1986. DOI: 10.1007/BF01036523.
  • J. Yang, F. He, Y. Fan, Z. Hu, and J. Li, “Measurement and estimate of thermophysical parameters of SiO 2 aerogel, Aerosp.” Mater. Technol, vol. 2, pp. 92, 2013.
  • W. -Q. Tao, Numerical Heat Transfer. Xi’an: Xi’an Jiaotong University Press, 2001.
  • A. Faghri, Y. Zhang, and J. R. Howell. Advanced Heat and Mass Transfer. Columbia, USA: Global Digital Press, 2010.
  • O. -J. Lee, K. -H. Lee, T. J. Yim, S. Y. Kim, and K. -P. Yoo, “Determination of mesopore size of aerogels from thermal conductivity measurements,” J. Non-Cryst. Solids, vol. 298, no. 2–3, pp.287–292, 2002. DOI: 10.1016/S0022-3093(01)01041-9.
  • J. -J. Zhao, Y. -Y. Duan, X. -D. Wang, and B. -X. Wang, “Effects of solid–gas coupling and pore and particle microstructures on the effective gaseous thermal conductivity in aerogels,” J Nanopart Res, vol. 14, no. 8, pp.1024, 2012. DOI: 10.1007/s11051-012-1024-0.
  • D. Lee, P. C. Stevens, S. Q. Zeng, and A. J. Hunt, “Thermal characterization of carbon-opacified silica aerogels,” J. Non-Cryst. Solids, vol. 186, pp. 285–290, 1995. DOI: 10.1016/0022-3093(95)00055-0.
  • J. Fricke, X. Lu, P. Wang, D. Büttner, and U. Heinemann, “Optimization of monolithic silica aerogel insulants,” Int. J. Heat Mass. Transfer, vol. 35, no. 9, pp.2305–2309, 1992. DOI: 10.1016/0017-9310(92)90073-2.
  • X. Lu, et al., “Thermal conductivity of monolithic organic aerogels,” Science, vol. 255, no. 5047, pp.971–972, 1992. DOI: 10.1126/science.255.5047.971.
  • C. Stumpf, K. Von Gässler, G. Reichenauer, and J. Fricke, “Dynamic gas flow measurements on aerogels,” J. Non-Cryst. Solids, vol. 145, pp. 180–184, 1992. DOI: 10.1016/S0022-3093(05)80452-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.