127
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The Tortuosity Effect on the Thermal Conductivity of Si Nanowires

&
Pages 110-124 | Received 09 Jan 2023, Accepted 21 Mar 2023, Published online: 05 Apr 2023

References

  • L. D. Hicks and M. S. Dresselhaus, “Thermoelectric figure of merit of a one-dimensional conductor,” Phys. Rev. B, vol. 47, no. 24, pp.16631–16634, 1993. DOI: 10.1103/PhysRevB.47.16631.
  • L. D. Hicks and M. S. Dresselhaus, “Effect of quantum-well structures on the thermoelectric figure of merit,” Phys. Rev. B, vol. 47, no. 19, pp.12727–12731, 1993. DOI: 10.1103/PhysRevB.47.12727.
  • J. Heremans, et al., “Bismuth nanowire arrays: synthesis and galvanomagnetic properties,” Phys. Rev. B, vol. 61, no. 4, pp.2921–2930, 2000. DOI: 10.1103/PhysRevB.61.2921.
  • J. P. Heremans, C. M. Thrush, D. T. Morelli, and M. Wu, “Thermoelectric power of bismuth nanocomposites,” Phys. Rev. Lett., vol. 88, no. 21, pp.216801, 2002. DOI: 10.1103/PhysRevLett.88.216801.
  • A. R. Abramson, et al., “Fabrication and characterization of nanowire/polymerbased nanocomposite for a prototype thermoelectric device,” J. Mems, vol. 13, no. 3, pp.505–515, 2004. DOI: 10.1109/JMEMS.2004.828742.
  • J. H. Seol, et al., “Measurement and analysis of thermopower and electrical conductivity of an indium antimonide nanowire from a vapor-liquid-solid method,” J. Appl. Phys., vol. 101, no. 2, pp.023706, 2007. DOI: 10.1063/1.2430508.
  • A. Khitun, A. Balandin, and K. L. Wang, “Modification of the lattice thermal conductivity in silicon quantum wires due to spatial confinement of acoustic phonons,” Superlattices Microstruct., vol. 26, no. 3, pp.181–193, 1999. DOI: 10.1006/spmi.1999.0772.
  • M. J. Huang, W. Y. Chong, and T. M. Chang, “The lattice thermal conductivity of a semiconductor nanowire,” J. Appl. Phys., vol. 99, no. 11, pp.114318, 2006. DOI: 10.1063/1.2203721.
  • M. J. Huang, T. M. Chang, W. Y. Chong, C. K. Liu, and C. K. Yu, “A new lattice thermal conductivity model of a thin film semiconductor,” Int. J. Heat and Mass Transf, vol. 50, no. 1–2, pp.67–74, 2007. DOI: 10.1016/j.ijheatmasstransfer.2006.06.044.
  • L. Deyu, et al., “Thermal conductivity of individual silicon nanowires,” Appl. Phys. Lett., vol. 83, no. 14, pp.2934, 2003. DOI: 10.1063/1.1616981.
  • W. Park, et al., “Phonon conduction in silicon nanobeams,” App. Phys. Lett, vol. 110, no. 21, pp.213102, 2017. DOI: 10.1063/1.4983790.
  • R. G. Chambers, “The conductivity of thin wires in a magnetic field.” Proc. R. Soc. A, vol. 202, pp. 378–394, 1950.
  • X. Zhao, J. Yan, H. Bao, and Y. Dan, “Single silicon nanowires as inherent heaters and thermometers for thermal conductivity measurements,” AIP Adv., vol. 9, no. 1, pp.015017, 2019. DOI: 10.1063/1.5078766.
  • A. I. Hochbaum, et al., “Enhanced thermoelectric performance of rough silicon nanowires,” Nature, vol. 451, no. 7175, pp.163–167, 2008. DOI: 10.1038/nature06381.
  • J. Lim, K. Hippalgaonkar, S. C. Andrews, A. Majumdar, and P. Yang, “Quantifying surface roughness effects on phonon transport in silicon nanowires,” Nano Lett., vol. 12, no. 5, pp.2475–2482, 2012. DOI: 10.1021/nl3005868.
  • R. Anufriev, S. Gluchko, S. Volz, and M. Nomura, “Quasi-ballistic heat conduction due to lévy phonon flights in silicon nanowires,” ACS Nano, vol. 12, no. 12, pp.11928–11935, 2018. DOI: 10.1021/acsnano.8b07597.
  • L. N. Maurer, Z. Aksamija, E. B. Ramayya, A. H. Davoody, and I. Knezevic, “Universal features of phonon transport in nanowires with correlated surface roughness,” Appl. Phys. Lett., vol. 106, no. 13, pp.133108, 2015. DOI: 10.1063/1.4916962.
  • K. Vuttivorakulchai, M. Luisier, and A. Schenk, Modeling the thermal conductivity of si nanowires with surface roughness, International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) September 6-8 Nuremberg, Germany. (2016).
  • H.Y. Yang, Y.L. Chen, W.X. Zhou, G. -F. Xie, and N. Xu, “Guo-Feng Xie and Ning Xu, Ultra-low thermal conductivity of roughened silicon nanowires: role of phonon–surface bond order imperfection scattering,” Chinese Phys. B, vol. 29, no. 8, pp.086502, 2020. DOI: 10.1088/1674-1056/ab99af.
  • A. L. Moore, S. K. Saha, R. S. Prasher, and L. Shi, “Phonon backscattering and thermal conductivity suppression in sawtooth nanowires,” Appl. Phys. Lett., vol. 93, no. 8, pp.083112, 2008. DOI: 10.1063/1.2970044.
  • J. Maire, R. Anufriev, and M. Nomura, “Ballistic thermal transport in silicon nanowires,” Sci. Rep., vol. 7, no. 1, pp.41794, 2017. DOI: 10.1038/srep41794.
  • P.K. Tsai and M.J. Huang, “A theoretical and simulation study of phonon flow within single-interface systems,” J Comput, Sci., vol. 61, pp. 101678, 2022. DOI: 10.1016/j.jocs.2022.101678.
  • Jean-Philippe M . P´eraud and Nicolas G. Hadjiconstantinou, “Efficient simulation of multidimensional phonon transport using energy-based variance-reduced Monte Carlo formulations,” Phys. Rev. B, vol. 84, no. 20, pp.205331, 2011. DOI: 10.1103/PhysRevB.84.205331.
  • Jean-Philippe M. P´eraud and Nicolas G. Hadjiconstantinou, “An alternative approach to efficient simulation of micro/nanoscale phonon transport,” Appl. Phys. Lett., vol. 101, no. 15, pp.153114, 2012. DOI: 10.1063/1.4757607.
  • http://www.ioffe.ru/SVA/NSM/Semicond/Si/mechanic.html#Phonon
  • D. Singh, J. Y. Murthy, and T. S. Fisher, “Effect of phonon dispersion on thermal conduction across Si/Ge interfaces,” J. Heat Transfer., vol. 133, no. 12, pp.122401, 2011. DOI: 10.1115/1.4004429.
  • P. E. Hopkins, et al., “Reduction in the thermal conductivity of single crystalline silicon by phononic crystal patterning,” Nano Lett., vol. 11, no. 1, pp.107–112, 2011. DOI: 10.1021/nl102918q.
  • https://www.efunda.com/materials/elements/TC_Table.cfm?Element_ID=Si
  • J. M. Ziman, Electrons and Phonons. New York: Oxford University Press, 1960.
  • H. B. G. Casimir, “Note on the conduction of heat in crystals,” Physica, vol. 5, no. 6, pp.495–500, 1938. DOI: 10.1016/S0031-8914(38)80162-2.
  • Z. Tian, K. Esfarjani, J. Shiomi, A. S. Henry, and G. Chen, “On the importance of optical phonons to thermal conductivity in nanostructures,” App. Phys. Lett, vol. 99, no. 5, pp.053122, 2011. DOI: 10.1063/1.3615709.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.