296
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Medium-Bridge Near-Field Thermophotovoltaic System

, ORCID Icon, , , ORCID Icon & ORCID Icon
Pages 195-207 | Received 07 Nov 2022, Accepted 05 Apr 2023, Published online: 21 Apr 2023

References

  • BCS Inc, Waste heat recovery: technology and opportunities in U.S. Industry for the U.S. Department of Energy, Industrial Technologies Program, March, 2008.
  • J. He and T. M. Tritt, “Advances in thermoelectric materials research: looking back and moving forward,” Science, vol. 357, pp. 6358, 2017. DOI: 10.1126/science.aak9997.
  • O. Ilic, et al., “Tailoring high-temperature radiation and the resurrection of the incandescent source,” Nat. Nanotechnol, vol. 11, no. 4, pp. 320–324, 2016. DOI: 10.1038/nnano.2015.309.
  • R. Hea, et al., “Achieving high power factor and output power density in p-type half-Heuslers Nb1-xTixFeSb,” P. Natl. Acad. Sci. USA, vol. 113, no. 48, pp. 13576–13581, 2016. DOI: 10.1073/pnas.1617663113.
  • A. Moreau, et al., “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature, vol. 492, pp. 86–89, 2012. DOI: 10.1038/nature11615.
  • D. M. Bierman, et al., “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy, vol. 1, no. 6, pp. 16068, 2016. DOI: 10.1038/nenergy.2016.68.
  • A. LaPotin, et al., “Thermophotovoltaic efficiency of 40%,” Nature, vol. 604, pp. 287–291, 2022. DOI: 10.1038/s41586-022-04473-y.
  • A. Datas, A. Lopez-Ceballos, E. Lopez, A. Ramos, and C. Del Canizo, “Latent heat thermophotovoltaic batteries,” Joule, vol. 6, pp. 418–443, 2022. DOI: 10.1016/j.joule.2022.01.010.
  • R. M. Swanson. Recent developments in thermophotovoltaic conversion. In 1980 International Electron Devices Meeting. IEEE, 1980, pp. 186–189.
  • O. Ilic, M. Jablan, J. Joannopoulos, I. Celanovic, and M. Soljacic, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express, vol. 20, no. S3, pp. 366–384, 2012. DOI: 10.1364/OE.20.00A366.
  • A. Fiorino, et al., “Nanogap near-field thermophotovoltaics,” Nat. Nanotech, vol. 13, no. 9, pp. 806–811, 2018. DOI: 10.1038/s41565-018-0172-5.
  • G. R. Bhatt, et al., “Integrated near-field thermo-photovoltaics for heat recycling,” Nat. Commun., vol. 11, no. 1, pp. 2545, 2020. DOI: 10.1038/s41467-020-16197-6.
  • B. Zhao, et al., “High-performance near-field thermophotovoltaics for waste heat recovery,” Nano. Energy, vol. 41, pp. 344–350, 2017. DOI: 10.1016/j.nanoen.2017.09.054.
  • G. Papadakis, S. Buddhiraju, Z. Zhao, B. Zhao, and S. Fan, “Broadening near-field emission for performance enhancement in thermophotovoltaics,” Nano Lett., vol. 20, no. 3, pp. 1654–1661, 2020. DOI: 10.1021/acs.nanolett.9b04762.
  • A. Bellucci, et al., “Photovoltaic anodes for enhanced thermionic energy conversion,” ACS. Energy. Lett, vol. 5, no. 5, pp. 1364–1370, 2020. DOI: 10.1021/acsenergylett.0c00022.
  • R. St-Gelais, G. R. Bhatt, L. X. Zhu, S. H. Fan, and M. Lipson, “Hot carrier-Based near-field thermophotovoltaic energy conversion,” ACS. Nano, vol. 11, no. 3, pp. 3001–3009, 2017. DOI: 10.1021/acsnano.6b08597.
  • M. Mirmoosa, S. Biehs, and C. Simovski, “Super-Planckian thermophotovoltaics without vacuum gaps,” Phys. Rev. Appl, vol. 8, no. 5, pp. 054020, 2017. DOI: 10.1103/PhysRevApplied.8.054020.
  • R. Q. Wang, J. C. Lu, and J. H. Jiang, “Enhancing thermophotovoltaic performance using graphene-BN- in Sb near-field heterostructures,” Phys. Rev. Appl, vol. 12, no. 4, pp. 044038, 2019. DOI: 10.1103/PhysRevApplied.12.044038.
  • T. Inoue, et al., “One-chip near-field thermophotovoltaic device integrating a thin-film thermal emitter and photovoltaic cell,” Nano Lett., vol. 19, no. 6, pp. 3948–3952, 2019. DOI: 10.1021/acs.nanolett.9b01234.
  • J. Song, M. Choi, Z. Yang, J. Lee, and B. J. Lee, “A multi-junction-based near-field solar thermophotovoltaic system with a graphite intermediate structure,” Appl. Phys. Lett., vol. 121, no. 16, pp. 163503, 2022. DOI: 10.1063/5.0115007.
  • C. C. Jiang, H. D. Huang, and Z. J. Zhou, “Enhancement in the multi-junction thermophotovoltaic system based on near-field heat transfer and hyperbolic metamaterial,” Sol. Energy, vol. 217, pp. 390–398, 2021. DOI: 10.1016/j.solener.2021.01.074.
  • K. Li, et al., “Transient performance of a nanowire-based near-field thermophotovoltaic system,” Appl. Therm. Eng., vol. 192, pp. 116918, 2021. DOI: 10.1016/j.applthermaleng.2021.116918.
  • H. T. Yu, Y. Y. Duan, and Z. Yang, “Selectively enhanced near-field radiative transfer between plasmonic emitter and GaSb with nanohole and nanowire periodic arrays for thermophotovoltaics,” Int. J. Heat. Mass. Tran, vol. 123, pp. 67–74, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.02.085.
  • P. Sabbaghi, Y. Yang, J. Y. Chang, and L. P. Wang, “Near-field thermophotovoltaic energy conversion by excitation of magnetic polariton inside nanometric vacuum gaps with nanostructured Drude emitter and backside reflector,” J. Quant. Spectrosc. Ra, vol. 234, pp. 108–114, 2019. DOI: 10.1016/j.jqsrt.2019.06.013.
  • K. Z. Shi, F. L. Bao, N. He, and S. L. He, “Near-field heat transfer between graphene-Si grating heterostructures with multiple magnetic-polaritons coupling,” Int. J. Heat. Mass. Tran, vol. 134, pp. 1119–1126, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.01.037.
  • S. Molesky and Z. Jacob, “Ideal near-field thermophotovoltaic cells,” Phys. Rev. B, vol. 91, no. 20, pp. 205435, 2015. DOI: 10.1103/PhysRevB.91.205435.
  • J. Song, J. Han, M. Choi, and B. J. Lee, “Modeling and experiments of near-field thermophotovoltaic conversion: a review,” Sol. Energy. Mat. Sol. C, vol. 38, pp. 111556, 2022. DOI: 10.1016/j.solmat.2021.111556.
  • J. Song, M. Lim, S. S. Lee, and B. J. Lee, “Analysis of photocurrent generation within a schottky-junction-based near-field thermophotovoltaic system,” Phys. Rev. Appl, vol. 11, no. 4, pp. 044040, 2019. DOI: 10.1103/PhysRevApplied.11.044040.
  • V. B. Svetovoy and G. Palasantzas, “Graphene-on-silicon near-field thermophotovoltaic cell,” Phys. Rev. Appl, vol. 2, no. 3, pp. 034006, 2014. DOI: 10.1103/PhysRevApplied.2.034006.
  • D. J. Fan, et al., “Near-perfect photon utilization in an air-bridge thermophotovoltaic cell,” Nature, vol. 586, pp. 237–241, 2020. DOI: 10.1038/s41586-020-2717-7.
  • T. Burger, D. J. Fan, K. Lee, S. R. Forrest, and A. Lenert, “Thin-film architectures with high spectral selectivity for thermophotovoltaic cells,” ACS. Photonics, vol. 5, no. 7, pp. 2748–2754, 2018. DOI: 10.1021/acsphotonics.8b00508.
  • B. Lee, et al., “Air-bridge Si thermophotovoltaic cell with high photon utilization,” ACS. Energy. Lett. Early Access, vol. 7, no. 7, pp. 2388–2392, 2022. DOI: 10.1021/acsenergylett.2c01075.
  • D. D. Feng, S. K. Yee, and Z. M. M. Zhang, “Improved performance of a near-field thermophotovoltaic device by a back gapped reflector,” Sol. Energy. Mat. Sol. C, vol. 237, pp. 111562, 2022. DOI: 10.1016/j.solmat.2021.111562.
  • B. Roy-Layinde, et al., “Sustaining efficiency at elevated power densities in InGaAs airbridge thermophotovoltaic cells,” Sol. Energy. Mat. Sol. C, vol. 236, pp. 111523, 2022. DOI: 10.1016/j.solmat.2021.111523.
  • A. Datas and R. Vaillon, “Thermionic-enhanced near-field thermophotovoltaics for medium-grade heat sources,” Appl. Phys. Lett., vol. 114, no. 13, pp. 133501, 2019. DOI: 10.1063/1.5078602.
  • F. R. Chen, Z. G. Xu, and Y. T. Wang, “Near-field radiative heat transfer enhancement in the thermophotovoltaic system using hyperbolic waveguides,” Int. J. Therm. Sci., vol. 166, pp. 106978, 2021. DOI: 10.1016/j.ijthermalsci.2021.106978.
  • K. Z. Shi, Z. Y. Chen, X. N. Xu, J. Evans, and S. L. He, “Optimized colossal near-field thermal radiation enabled by manipulating coupled plasmon polariton geometry,” Adv. Mater. Weinheim, vol. 33, no. 52, pp. 2106097, 2021. DOI: 10.1002/adma.202106097.
  • R. Vaillon, et al., “Micron-sized liquid nitrogen-cooled indium antimonide photovoltaic cell for near-field thermophotovoltaics,” Opt. Express, vol. 27, no. 4, pp. A11–24, 2019. DOI: 10.1364/OE.27.000A11.
  • D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B, vol. 4, no. 10, pp. 3303–3314, 1971. DOI: 10.1103/PhysRevB.4.3303.
  • M. Francoeur, 2010. Near-field radiative transfer: thermal radiation, thermophotovoltaic power generation and optical characterization. Univ. Kentucky Dr. Diss. University of Kentucky Doctoral.
  • T. Dissertation Inoue, T. Suzuki, K. Ikeda, T. Asano, and S. Noda, “Near-field thermophotovotaic devices with surrounding non-contact reflectors for efficient photon recycling,” Opt. Express, vol. 29, no. 7, pp. 11133–11143, 2021. DOI: 10.1364/OE.419529.
  • X. L. Liu and Z. M. M. Zhang, “High-performance electroluminescent refrigeration enabled by photon tunneling,” Nano. Energy, vol. 26, pp. 353–359, 2016. DOI: 10.1016/j.nanoen.2016.05.049.
  • S. -A. Biehs, et al., “Near-field radiative heat transfer in many-body systems,” Rev. Mod. Phys, vol. 93, no. 2, pp. 025009, 2021. DOI: 10.1103/RevModPhys.93.025009.
  • A. Narayanaswamy and G. Chen, “Surface modes for near field thermophotovoltaics,” Appl. Phys. Lett., vol. 82, no. 20, pp. 3544–3546, 2003. DOI: 10.1063/1.1575936.
  • T. J. Liao, Z. M. Yang, W. L. Peng, X. H. Chen, and J. C. Chen, “Parametric characteristics and optimum criteria of a near-field solar thermophotovoltaic system at the maximum efficiency,” Energ. Convers. Manage, vol. 152, pp. 214–220, 2017. DOI: 10.1016/j.enconman.2017.09.031.
  • M. Laroche, R. Carminati, and J. J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys., vol. 100, no. 6, pp. 063704, 2006. DOI: 10.1063/1.2234560.
  • L. X. Zhu, et al., “Near-field photonic cooling through control of the chemical potential of photons,” Nature, vol. 566, pp. 239–244, 2019. DOI: 10.1038/s41586-019-0918-8.
  • K. F. Chen, P. Santhanam, S. Sandhu, L. X. Zhu, and S. H. Fan, “Heat-flux control and solid-state cooling by regulating chemical potential of photons in near-field electromagnetic heat transfer,” Phys. Rev. B, vol. 91, no. 13, pp. 134301, 2015. DOI: 10.1103/PhysRevB.91.134301.
  • E. Blandre, P. -O. Chapuis, and R. Vaillon, “High-injection effects in near-field thermophotovoltaic devices,” Sci. Rep, vol. 7, no. 1, pp. 15860, 2017. DOI: 10.1038/s41598-017-15996-0.
  • J. Legendre and P. -O. Chapuis, “Overcoming non-radiative losses with AlGaAs PIN junctions for near-field thermophotonic energy harvesting,” Appl. Phys. Lett., vol. 121, no. 19, pp. 193902, 2022. DOI: 10.1063/5.0116662.
  • D. D. Feng, et al., “Spatial profiles of photon chemical potential in near-field thermophotovoltaic cells,” J. Apps. Phys, vol. 129, no. 21, pp. 213101, 2021. DOI: 10.1063/5.0047241.
  • C. Lucchesi, et al., “Near-field thermophotovoltaic conversion with high electrical power density and cell efficiency above 14%,” Nano Lett., vol. 21, no. 11, pp. 4524–4529, 2021. DOI: 10.1021/acs.nanolett.0c04847.
  • F. R. Chen, G. An, and Z. G. Xu, “Performance analysis of three-body near-field thermophotovoltaic systems with an intermediate modulator,” J. Quant. Spectrosc. Ra, vol. 258, pp. 107395, 2021. DOI: 10.1016/j.jqsrt.2020.107395.
  • J. R. Dixon and J. M. Ellis, “Optical properties of n-type indium arsenide in the fundamental absorption edge region,” Phys. Rev., vol. 123, no. 5, pp. 1560–1566, 1961. DOI: 10.1103/PhysRev.123.1560.
  • G. W. Gobeli and H. Y. Fan, “Infrared absorption and valence band in indium antimonide,” Phys. Rev., vol. 119, no. 2, pp. 613–620, 1960. DOI: 10.1103/PhysRev.119.613.
  • T. Burger, C. Sempere, B. Roy-Layinde, and A. Lenert, “Present efficiencies and future opportunities in thermophotovoltaics,” Joule, vol. 4, pp. 1660–1680, 2020. DOI: 10.1016/j.joule.2020.06.021.
  • J. Song, M. Choi, M. Lim, J. Lee, and B. J. Lee, “Comprehensive analysis of an optimized near-field tandem thermophotovoltaic converter,” Sol. Energy. Mat. Sol. C, vol. 236, pp. 111522, 2022. DOI: 10.1016/j.solmat.2021.111522.
  • E. Blandre, P. -O. Chapuis, M. Francoeur, and R. Vaillon, “Spatial and spectral distributions of thermal radiation emitted by a semi-infinite body and absorbed by a flat film,” AIP Adv., vol. 5, no. 5, pp. 057106, 2015. DOI: 10.1063/1.4919931.
  • J. Legendre and P. -O. Chapuis, “GaAs-based near-field thermophotonic devices: approaching the idealized case with one-dimensional PN junctions,” Sol. Energ. Mat. Sol. C, vol. 238, pp. 111594, 2022. DOI: 10.1016/j.solmat.2022.111594.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.